Skip to main content
Search for Articles:
Tropical Aquatic and Soil Pollution

Journal Description

Tropical Aquatic and Soil Pollution

Tropical Aquatic and Soil Pollution (e-ISSN: 2798-3056) is an international, scientific, peer-reviewed, open access journal on theoretical and applied sciences related to aquatic and soil, all aspects of pollution and solution to pollution in the biosphere published biannual online by Tecno Scientifica.

Open Access
e-ISSN: 2798-3056
Assessment of Indoor Household Air Quality Using SentinAir's Cost-effective Sensor
by Francis Olawale Abulude, Matthew Ojo Oluwafemi, Kikelomo Mabinuola Arifalo, Jamok Jacob Elisha, Amoke Monisola Kenni

Trop. Aqua. Soil Pollut. 2023, 3(1), pp 15-23;

According to the World Health Organization, particulate matter (2.5 m) is responsible for more than 4 million deaths worldwide. In real-time, low-cost sensors have assisted in the measurement of PM indoors. SentiAir, a low-cost instrument used in this study, monitors particulate matter (1, 2.5, and 10), as well as nitrogen dioxide, sulphur dioxide, carbon dioxide, ozone, temperature, and relative humidity. The goal of this study was to place the sensor in a typical household indoor space and evaluate all variables for 30 days as an initial investigation assessment. The sensor's proper procedure was strictly observed. PM1 (17.80 µg/m3), PM2.5 (25.21 µg/m3), PM10 (27.61 µg/m3), CO2 (419.7 ppm), O3 (24.75 ppb), NO2 (66.52 ppb), SO2 (48.04 ppb), temperature (34.1 °C), and humidity were the results (mean) (64%). Once those findings were compared to those of the WHO, it was discovered that PM2.5 and PM10 were well within the 24-hour guideline values of 25 and 50 µg/m3, respectively. However, PM2.5 may pose a risk. Temperature and humidity had a significant impact on the PM and gases. Cooking, especially frying and baking, produced a great increment in PM indoors. Full text

Evaluation of the Impact of Crude Oil Contamination on Soil's Physicochemical Characteristics, Micro-flora and Crop Yield
by Ugochukwu Chukwuma Okafor

Trop. Aqua. Soil Pollut. 2023, 3(1), pp 24-35;

The effects of crude oil pollution on soil physicochemical properties, microflora, and ecotoxicity were evaluated. Soil samples were contaminated with crude oil, and the effects of contamination on the physicochemical parameters, microflora, and growth index of bean (Phaseolus vulgaris) seeds were studied over a 6-month period. The heterotrophic bacteria isolated from the uncontaminated soil were Micrococcus, Klebsiella, Flavobacterium, Bacillus, Pseudomonas, and Serratia species, and the moulds included microbes such as Aspergillus niger, Fusarium, and Mucor sp. Petroleum contamination increased the pH of the soils to alkaline values while increasing the total nitrogen, organic carbon, and phosphorus contents. Electrical conductivity, nitrogen content, and phosphorus content were significantly reduced after petroleum contamination (p ˂ 0.05). The heavy metal contents of the contaminated soils decreased with increasing remediation time. Zinc, total nitrogen, total organic carbon, and electrical conductivity contents were statistically significantly different among samples throughout the bioremediation period (p ˂ 0.05). The ability of isolates to utilise hydrocarbons was highest for Pseudomonas and Bacillus species and lowest for Klebsiella and Serratia species. After a germination period of 12 days, a germination test showed that the bioattenuated polluted soil improved germination of bean seeds. Bioattenuation methods should be used and improved as a means of remediating petroleum-polluted sites because they are cost-effective and environmentally friendly. Full text

Abundance and Characteristics of Microplastics in the Soil of a Higher Education Institution in China
by Kuok Ho Daniel Tang, Yuxin Luo

Trop. Aqua. Soil Pollut. 2023, 3(1), pp 1-14;

While microplastics have been detected in various spheres of the environment, there are few studies examining their abundance in higher education institutions, where their exposure to students and staff could raise concern. This study aims to quantify and characterise the microplastics in the soil of a higher education institution in China. Surface soil samples were collected in triplicate from nine sampling sites distributed evenly across teaching, recreational, and residential areas on campus. The soil samples were sieved with a 5 mm screen, and the fractions passing through the sieve were digested with 30% hydrogen peroxide. Microplastics were density-separated from the digested soil and observed under the microscope. ATR-FTIR was used to determine their compositions. This study reveals a higher abundance of microplastics in teaching and residential areas (150–700 items/kg and 50–650 items/kg, respectively) as compared to recreational areas (0–450 items/kg), with the highest mean abundance (516.7 items/kg) recorded for residential areas. Fibrous and fragment microplastics (31.5% and 33.3%, respectively) were most common in the soil samples, with the former more prevalent in residential areas. There were more black microplastics (36.4%) and white microplastics (29.1%) than those of other colors. Microplastics £ 0.5 mm constituted the largest fraction (64.3%) of total microplastics recovered and polyethylene microplastics were most abundant (35.2%). This study contributes to a better understanding of microplastic pollution in the compounds of higher education institutions, which could be positively linked to the human activities within those institutions. Full text