Skip to main content

Microplastics in Soil: Uncovering Their Hidden Chemical Implications

Author(s): Kuok Ho Daniel Tang ORCID https://orcid.org/0000-0003-4474-7766
Author(s) information:
Department of Environmental Science, The University of Arizona, Tucson, Arizona 85721, USA

Corresponding author

This review synthesizes findings from over 100 recent studies to examine the multifaceted impacts of microplastics on soil health. Microplastics affect soil nutrient dynamics through mechanisms such as chemical leaching, nutrient adsorption, microbial shifts, and physical alterations in soil structure. Their influence varies by polymer type, particle morphology, concentration, and environmental conditions. While some microplastics may enhance nutrient retention, many contribute to nitrogen and phosphorus depletion, undermining soil fertility and agricultural productivity. Microplastics also modify soil pH in inconsistent ways, either increasing or decreasing it, thereby disrupting nutrient availability and microbial functions. The effects of microplastics on soil organic matter are equally complex. Biodegradable microplastics can stimulate microbial respiration and increase dissolved organic carbon, but they may also destabilize carbon pools, depending on the environmental context and soil conditions. Additionally, microplastics act as vectors or sinks for organic pollutants and heavy metals through diverse sorption–desorption mechanisms. Their interactions with contaminants such as pesticides, pharmaceuticals, and metals like lead, cadmium, and zinc are influenced by polymer type, surface aging, and coexisting soil constituents. Microplastics not only impair nutrient cycling but also alter microbial community composition, enzymatic activity, and pollutant degradation, raising concerns about the function of soil ecosystems and food safety. Future research should prioritize long-term, multi-factorial experiments under realistic environmental conditions. Key areas include disentangling the effects of conventional versus biodegradable microplastics, developing mechanistic models of pollutant interactions, and assessing the role of environmental parameters in mediating metal binding. Such efforts are vital for accurate risk assessments and informed mitigation strategies in terrestrial ecosystems.

Tang, K.H.D. (2023). Enhanced plastic economy: a perspective and a call for international action. Environmental Science: Advances, 2(8), 1011‒1018. https://doi.org/10.1039/D3VA00116A.

Huang, S.; Dong, Q.; Che, S.; Li, R.; Tang, K.H.D. (2025). Bioplastics and biodegradable plastics: A review of recent advances, feasibility and cleaner production. Science of The Total Environment, 969, 178911. https://doi.org/10.1016/j.scitotenv.2025.178911.

Tang, K.H.D.; Hadibarata, T. (2022). The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective. Bioprocess and Biosystems Engineering, 45(11), 1865‒1878. https://doi.org/10.1007/s00449-022-02793-x.

Akdogan, Z.; Guven, B. (2019). Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environmental Pollution, 254, 113011. https://doi.org/10.1016/j.envpol.2019.113011.

de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405‒1416. https://doi.org/10.1111/gcb.14020.

Rillig, M.C.; Lehmann, A. (2020). Microplastic in terrestrial ecosystems. Science, 368(6498), 1430‒1431. https://doi.org/10.1126/science.abb5979.

Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768‒771. https://doi.org/10.1126/science.1260352.

Tang, K.H.D. (2024). Microplastics and antibiotics in aquatic environments: A review of their interactions and ecotoxicological implications. Tropical Aquatic and Soil Pollution, 4(1), 60‒78. https://doi.org/10.53623/tasp.v4i1.446.

Tang, K.H.D. (2023). Microplastics in agricultural soils in China: Sources, impacts and solutions. Environmental Pollution, 322, 121235. https://doi.org/10.1016/j.envpol.2023.121235.

Tang, K.H.D. (2024). Occurrence and fate of microplastics in anaerobic digestion of dewatered sludge. In Bhat, S.A.; Kumar, V.; Li, F.; Kumar, S. (Eds.), Management of Micro and Nano-plastics in Soil and Biosolids: Fate, Occurrence, Monitoring, and Remedies (pp. 325–341). Springer Nature Switzerland.

Adhikari, K.; Pearce, C.I.; Sanguinet, K.A.; Bary, A.I.; Chowdhury, I.; Eggleston, I.; Xing, B.; Flury, M. (2024). Accumulation of microplastics in soil after long term application of biosolids and atmospheric deposition. Science of The Total Environment, 912, 168883. https://doi.org/10.1016/j.scitotenv.2023.168883.

Yang, Y.; Li, Z.; Yan, C.; Chadwick, D.; Jones, D.L.; Liu, E.; Liu, Q.; Bai, R.; He, W. (2022). Kinetics of microplastic generation from different types of mulch films in agricultural soil. Science of The Total Environment, 814, 152572. https://doi.org/10.1016/j.scitotenv.2021.152572.

de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10), 6044‒6052. https://doi.org/10.1021/acs.est.9b01339.

Wang, F.; Wang, X.; Song, N. (2021). Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Science of The Total Environment, 784, 147133. https://doi.org/10.1016/j.scitotenv.2021.147133.

Yan, Y.; Chen, Z.; Zhu, F.; Zhu, C.; Wang, C.; Gu, C. (2021). Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils. Bulletin of Environmental Contamination and Toxicology, 107(4), 602‒609. https://doi.org/10.1007/s00128-020-02900-2.

Zhang, S.; Han, B.; Sun, Y.; Wang, F. (2020). Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials, 388, 121775. https://doi.org/10.1016/j.jhazmat.2019.121775.

Zhou, J.; Wen, Y.; Marshall, M.R.; Zhao, J.; Gui, H.; Yang, Y.; Zeng, Z.; Jones, D.L.; Zang, H. (2021). Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of The Total Environment, 787, 147444. https://doi.org/10.1016/j.scitotenv.2021.147444.

Wang, W.; Ge, J.; Yu, X.; Li, H. (2020). Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of The Total Environment, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841.

Li, J.; Song, Y.; Cai, Y. (2020). Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks. Environmental Pollution, 257, 113570. https://doi.org/10.1016/j.envpol.2019.113570.

Xu, B.; Fei, L.; Zachary, C.; Dan, H.; Zhijiang, L.; Yan, H.; Haizhen, W.; Zhenmei, L.; C., B.P.; Caixian, T.; Jay, G.; Xu, J. (2020). Microplastics in the soil environment: Occurrence, risks, interactions and fate – A review. Critical Reviews in Environmental Science and Technology, 50(21), 2175‒2222. https://doi.org/10.1080/10643389.2019.1694822.

Ya, H.; Jiang, B.; Xing, Y.; Zhang, T.; Lv, M.; Wang, X. (2021). Recent advances on ecological effects of microplastics on soil environment. Science of The Total Environment, 798, 149338. https://doi.org/10.1016/j.scitotenv.2021.149338.

Hanif, M.N.; Aijaz, N.; Azam, K.; Akhtar, M.; Laftah, W.A.; Babur, M.; Abbood, N.K.; Benitez, I.B. (2024). Impact of microplastics on soil (physical and chemical) properties, soil biological properties/soil biota, and response of plants to it: a review. International Journal of Environmental Science and Technology, 21(16), 10277–10318. https://doi.org/10.1007/s13762-024-05656-y.

Palansooriya, K.N.; Shi, L.; Sarkar, B.; Parikh, S.J.; Sang, M.K.; Lee, S. R.; Ok, Y.S. (2022). Effect of LDPE microplastics on chemical properties and microbial communities in soil. Soil Use and Management, 38(3), 1481–1492. https://doi.org/10.1111/sum.12808.

Li, R.; Liu, Y.; Sheng, Y.; Xiang, Q.; Zhou, Y.; Cizdziel, J.V. (2020). Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. Environmental Pollution, 260, 113988. https://doi.org/10.1016/j.envpol.2020.113988.

Lozano, Y.M.; Aguilar Trigueros, C.A.; Onandia, G.; Maaß, S.; Zhao, T.; Rillig, M.C. (2021). Effects of microplastics and drought on soil ecosystem functions and multifunctionality. Journal of Applied Ecology, 58(5), 988–996. https://doi.org/10.1111/1365-2664.13839.

Yu, H.; Hou, J.; Dang, Q.; Cui, D.; Xi, B.; Tan, W. (2020). Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. Journal of Hazardous Materials, 395, 122690. https://doi.org/10.1016/j.jhazmat.2020.122690.

Hou, J.; Xu, X.; Yu, H.; Xi, B.; Tan, W. (2021). Comparing the long term responses of soil microbial structures and diversities to polyethylene microplastics in different aggregate fractions. Environment International, 149, 106398. https://doi.org/10.1016/j.envint.2021.106398.

Dong, Y.; Gao, M.; Qiu, W.; Song, Z. (2021). Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicology and Environmental Safety, 211, 111899. https://doi.org/10.1016/j.ecoenv.2021.111899.

Li, H. Z.; Zhu, D.; Lindhardt, J.H.; Lin, S. M.; Ke, X.; Cui, L. (2021). Long term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environmental Science & Technology, 55(8), 4658–4668. https://doi.org/10.1021/acs.est.0c04849.

Liang, R.; Zhang, C.; Zhang, R.; Li, Q.; Liu, H.; Wang, X. X. (2024). Effects of microplastics derived from biodegradable mulch film on different plant species growth and soil properties. Science of The Total Environment, 948, 174899. https://doi.org/10.1016/j.scitotenv.2024.174899.

Li, H.; Liu, L. (2022). Short term effects of polyethene and polypropylene microplastics on soil phosphorus and nitrogen availability. Chemosphere, 291, 132984. https://doi.org/10.1016/j.chemosphere.2021.132984.

Gao, S.; Fu, Y.; Peng, X.; Ma, S.; Liu, Y. R.; Chen, W.; Huang, Q.; Hao, X. (2025). Microplastics trigger soil dissolved organic carbon and nutrient turnover by strengthening microbial network connectivity and cross trophic interactions. Environmental Science & Technology, 59(11), 5596‒5606. https://doi.org/10.1021/acs.est.4c12546.

Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. (2022). Microplastics change soil properties, heavy metal availability and bacterial community in a Pb Zn contaminated soil. Journal of Hazardous Materials, 424, 127364. https://doi.org/10.1016/j.jhazmat.2021.127364.

Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. (2022). Microplastics change soil properties, heavy metal availability and bacterial community in a Pb Zn contaminated soil. Journal of Hazardous Materials, 424, 127364. https://doi.org/10.1016/j.jhazmat.2021.127364.

Chen, H.; Wang, Y.; Sun, X.; Peng, Y.; Xiao, L. (2020). Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 243, 125271. https://doi.org/10.1016/j.chemosphere.2019.125271.

Qian, H.; Zhang, M.; Liu, G.; Lu, T.; Qu, Q.; Du, B.; Pan, X. (2018). Effects of soil residual plastic film on soil microbial community structure and fertility. Water, Air, & Soil Pollution, 229(8), 261. https://doi.org/10.1007/s11270-018-3916-9.

Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907‒917.

Mao, R.; Lang, M.; Yu, X.; Wu, R.; Yang, X.; Guo, X. (2020). Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of Hazardous Materials, 393, 122515. https://doi.org/10.1016/j.jhazmat.2020.122515.

Zou, J.; Liu, X.; Zhang, D.; Yuan, X. (2020). Adsorption of three bivalent metals by four chemical distinct microplastics. Chemosphere, 248, 126064. https://doi.org/10.1016/j.chemosphere.2020.126064.

Tang, K.H.D. (2020). Effects of microplastics on agriculture: a mini review. https://doi.org/10.9734/AJEE/2020/v13i130170.

Qu, Q.; Zhang, Z.; Peijnenburg, W.J.G.M.; Liu, W.; Lu, T.; Hu, B.; Chen, J.; Chen, J.; Lin, Z.; Qian, H. (2020). Rhizosphere microbiome assembly and its impact on plant growth. Journal of Agricultural and Food Chemistry, 68(18), 5024–5038. https://doi.org/10.1021/acs.jafc.0c00073.

Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Sun, Y. (2020). Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere, 254, 126791. https://doi.org/10.1016/j.chemosphere.2020.126791.

Yang, W.; Cheng, P.; Adams, C.A.; Zhang, S.; Sun, Y.; Yu, H.; Wang, F. (2021). Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biology and Biochemistry, 155, 108179. https://doi.org/10.1016/j.soilbio.2021.108179.

Lehmann, A.; Leifheit, E.F.; Feng, L.; Bergmann, J.; Wulf, A.; Rillig, M.C. (2022). Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi. Soil Ecology Letters, 4(1), 32–44. https://doi.org/10.1007/s42832-020-0060-4.

Huang, Y.; Zhao, Y.; Wang, J.; Zhang, M.; Jia, W.; Qin, X. (2019). LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 254, 112983. https://doi.org/10.1016/j.envpol.2019.112983.

Shen, M.; Song, B.; Zhou, C.; Almatrafi, E.; Hu, T.; Zeng, G.; Zhang, Y. (2022). Recent advances in impacts of microplastics on nitrogen cycling in the environment: A review. Science of The Total Environment, 815, 152740. https://doi.org/10.1016/j.scitotenv.2021.152740.

Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. (2022). The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management, 321, 115770. https://doi.org/10.1016/j.jenvman.2022.115770.

Zhang, Z.; Wang, W.; Liu, J.; Wu, H. (2024). Discrepant responses of bacterial community and enzyme activities to conventional and biodegradable microplastics in paddy soil. Science of The Total Environment, 909, 168513. https://doi.org/10.1016/j.scitotenv.2023.168513.

Qi, Y.; Ossowicki, A.; Yang, X.; Huerta Lwanga, E.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. (2020). Effects of plastic mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 387, 121711. https://doi.org/10.1016/j.jhazmat.2019.121711.

Boots, B.; Russell, C.W.; Green, D.S. (2019). Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 53(19), 11496–11506. https://doi.org/10.1021/acs.est.9b03304.

Hu, B.; Guo, P.; Han, S.; Jin, Y.; Nan, Y.; Deng, J.; He, J.; Wu, Y.; Chen, S. (2022). Distribution characteristics of microplastics in the soil of mangrove restoration wetland and the effects of microplastics on soil characteristics. Ecotoxicology, 31(7), 1120–1136. https://doi.org/10.1007/s10646-022-02561-3.

Wang, J.; Liu, W.; Zeb, A.; Wang, Q.; Mo, F.; Shi, R.; Sun, Y.; Wang, F. (2024). Biodegradable microplastic-driven change in soil pH affects soybean rhizosphere microbial N transformation processes. Journal of Agricultural and Food Chemistry, 72(30), 16674–16686. https://doi.org/10.1021/acs.jafc.4c04206.

Zhao, T.; Lozano, Y.M.; Rillig, M.C. (2021). Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.675803.

Wang, J.; Liu, X.; Dai, Y.; Ren, J.; Li, Y.; Wang, X.; Zhang, P.; Peng, C. (2020). Effects of co-loading of polyethylene microplastics and ciprofloxacin on the antibiotic degradation efficiency and microbial community structure in soil. Science of The Total Environment, 741, 140463. https://doi.org/10.1016/j.scitotenv.2020.140463.

Bandow, N.; Will, V.; Wachtendorf, V.; Simon, F.-G. (2017). Contaminant release from aged microplastic. Environmental Chemistry, 14(6), 394–405. https://doi.org/10.1071/EN17064.

Kim, S.W.; Waldman, W.R.; Kim, T.-Y.; Rillig, M.C. (2020). Effects of different microplastics on nematodes in the soil environment: Tracking the extractable additives using an ecotoxicological approach. Environmental Science & Technology, 54(21), 13868–13878. https://doi.org/10.1021/acs.est.0c04641.

Rong, L.; Zhao, L.; Zhao, L.; Cheng, Z.; Yao, Y.; Yuan, C.; Wang, L.; Sun, H. (2021). LDPE microplastics affect soil microbial communities and nitrogen cycling. Science of The Total Environment, 773, 145640. https://doi.org/10.1016/j.scitotenv.2021.145640.

Liu, Y.; Huang, Q.; Hu, W.; Qin, J.; Zheng, Y.; Wang, J.; Wang, Q.; Xu, Y.; Guo, G.; Hu, S.; Xu, L. (2021). Effects of plastic mulch film residues on soil-microbe-plant systems under different soil pH conditions. Chemosphere, 267, 128901. https://doi.org/10.1016/j.chemosphere.2020.128901.

Ren, X.; Tang, J.; Liu, X.; Liu, Q. (2020). Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environmental Pollution, 256, 113347. https://doi.org/10.1016/j.envpol.2019.113347.

Zhang, H.; Huang, Y.; Shen, J.; Xu, F.; Hou, H.; Xie, C.; Wang, B.; An, S. (2024). Mechanism of polyethylene and biodegradable microplastic aging effects on soil organic carbon fractions in different land-use types. Science of The Total Environment, 912, 168961. https://doi.org/10.1016/j.scitotenv.2023.168961.

Zhang, G.S.; Zhang, F.X. (2020). Variations in aggregate-associated organic carbon and polyester microfibers resulting from polyester microfibers addition in a clayey soil. Environmental Pollution, 258, 113716. https://doi.org/10.1016/j.envpol.2019.113716.

Piccardo, M.; Provenza, F.; Grazioli, E.; Cavallo, A.; Terlizzi, A.; Renzi, M. (2020). PET microplastics toxicity on marine key species is influenced by pH, particle size and food variations. Science of The Total Environment, 715, 136947. https://doi.org/10.1016/j.scitotenv.2020.136947.

Mei, W.; Chen, G.; Bao, J.; Song, M.; Li, Y.; Luo, C. (2020). Interactions between microplastics and organic compounds in aquatic environments: A mini review. Science of The Total Environment, 736, 139472. https://doi.org/10.1016/j.scitotenv.2020.139472.

Meng, F.; Yang, X.; Riksen, M.; Geissen, V. (2022). Effect of different polymers of microplastics on soil organic carbon and nitrogen – A mesocosm experiment. Environmental Research, 204, 111938. https://doi.org/10.1016/j.envres.2021.111938.

Shi, J.; Wang, J.; Lv, J.; Wang, Z.; Peng, Y.; Shang, J.; Wang, X. (2022). Microplastic additions alter soil organic matter stability and bacterial community under varying temperature in two contrasting soils. Science of The Total Environment, 838, 156471. https://doi.org/10.1016/j.scitotenv.2022.156471.

Tang, K.H.D. (2023). Environmental co-existence of microplastics and perfluorochemicals: A review of their interactions. Biointerface Research in Applied Chemistry, 13(6), 587.

Wang, T.; Yu, C.; Chu, Q.; Wang, F.; Lan, T.; Wang, J. (2020). Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere, 244, 125491. https://doi.org/10.1016/j.chemosphere.2019.125491.

Li, H.; Wang, F.; Li, J.; Deng, S.; Zhang, S. (2021). Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere, 264, 128556. https://doi.org/10.1016/j.chemosphere.2020.128556.

Li, J.; Zhang, K.; Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution, 237, 460–467. https://doi.org/10.1016/j.envpol.2018.02.050.

Zhang, H.; Wang, J.; Zhou, B.; Zhou, Y.; Dai, Z.; Zhou, Q.; Chriestie, P.; Luo, Y. (2018). Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environmental Pollution, 243, 1550–1557. https://doi.org/10.1016/j.envpol.2018.09.122.

Lončarski, M.; Gvoić, V.; Prica, M.; Cveticanin, L.; Agbaba, J.; Tubić, A. (2021). Sorption behavior of polycyclic aromatic hydrocarbons on biodegradable polylactic acid and various nondegradable microplastics: Model fitting and mechanism analysis. Science of The Total Environment, 785, 147289. https://doi.org/10.1016/j.scitotenv.2021.147289.

Velzeboer, I.; Kwadijk, C.J.A.F.; Koelmans, A.A. (2014). Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environmental Science & Technology, 48(9), 4869–4876. https://doi.org/10.1021/es405721v.

Llorca, M.; Ábalos, M.; Vega-Herrera, A.; Adrados, M.A.; Abad, E.; Farré, M. (2020). Adsorption and desorption behaviour of polychlorinated biphenyls onto microplastics’ surfaces in water/sediment systems. Toxics, 8(3). https://doi.org/10.3390/toxics8030059.

Atugoda, T.; Vithanage, M.; Wijesekara, H.; Bolan, N.; Sarmah, A.K.; Bank, M.S.; You, S.; Ok, Y.S. (2021). Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 149, 106367. https://doi.org/10.1016/j.envint.2020.106367.

Wang, F.; Zhang, M.; Sha, W.; Wang, Y.; Hao, H.; Dou, Y.; Li, Y. (2020). Sorption behavior and mechanisms of organic contaminants to nano and microplastics. Molecules, 25(8). https://doi.org/10.3390/molecules25081827.

Hartmann, N.B.; Rist, S.; Bodin, J.; Jensen, L.H.S.; Schmidt, S.N.; Mayer, P.; Meibom, A.; Baun, A. (2017). Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integrated Environmental Assessment and Management, 13(3), 488–493. https://doi.org/10.1002/ieam.1904.

Joo, S.H.; Liang, Y.; Kim, M.; Byun, J.; Choi, H. (2021). Microplastics with adsorbed contaminants: Mechanisms and treatment. Environmental Challenges, 3, 100042. https://doi.org/10.1016/j.envc.2021.100042.

Hüffer, T.; Metzelder, F.; Sigmund, G.; Slawek, S.; Schmidt, T.C.; Hofmann, T. (2019). Polyethylene microplastics influence the transport of organic contaminants in soil. Science of The Total Environment, 657, 242–247. https://doi.org/10.1016/j.scitotenv.2018.12.047.

Li, J.; Guo, K.; Cao, Y.; Wang, S.; Song, Y.; Zhang, H. (2021). Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics. Environmental Pollution, 269, 116151. https://doi.org/10.1016/j.envpol.2020.116151.

Tang, K.H.D. (2025). Effects of microplastics on bioavailability, persistence and toxicity of plant pesticides: An agricultural perspective. Agriculture, 15(4). https://doi.org/10.3390/agriculture15040356.

Chen, X.; Gu, X.; Bao, L.; Ma, S.; Mu, Y. (2021). Comparison of adsorption and desorption of triclosan between microplastics and soil particles. Chemosphere, 263, 127947. https://doi.org/10.1016/j.chemosphere.2020.127947.

Sun, M.; Ye, M.; Jiao, W.; Feng, Y.; Yu, P.; Liu, M.; Jiao, J.; He, X.; Liu, K.; Zhao, Y.; Wu, J.; Jiang, X.; Hu, F. (2018). Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid. Journal of Hazardous Materials, 345, 131–139. https://doi.org/10.1016/j.jhazmat.2017.11.036.

Xu, B.; Huang, D.; Liu, F.; Alfaro, D.; Lu, Z.; Tang, C.; Gan, J.; Xu, J. (2021). Contrasting effects of microplastics on sorption of diazepam and phenanthrene in soil. Journal of Hazardous Materials, 406, 124312. https://doi.org/10.1016/j.jhazmat.2020.124312.

Wang, J.; Coffin, S.; Schlenk, D.; Gan, J. (2020). Accumulation of HOCs via precontaminated microplastics by earthworm Eisenia fetida in soil. Environmental Science & Technology, 54(18), 11220–11229. https://doi.org/10.1021/acs.est.0c02922.

Xu, G.; Liu, Y.; Song, X.; Li, M.; Yu, Y. (2021). Size effects of microplastics on accumulation and elimination of phenanthrene in earthworms. Journal of Hazardous Materials, 403, 123966. https://doi.org/10.1016/j.jhazmat.2020.123966.

Xiang, Q.; Zhu, D.; Chen, Q.-L.; O’Connor, P.; Yang, X.-R.; Qiao, M.; Zhu, Y.-G. (2019). Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (~2 µm) on gut microbiota and the antibiotic resistome of a soil collembolan. Environmental Science & Technology, 53(21), 12823–12834. https://doi.org/10.1021/acs.est.9b04795.

Ding, J.; Zhu, D.; Wang, H.-T.; Lassen, S. B.; Chen, Q.-L.; Li, G.; Lv, M.; Zhu, Y.-G. (2020). Dysbiosis in the gut microbiota of soil fauna explains the toxicity of tire tread particles. Environmental Science & Technology, 54(12), 7450–7460. https://doi.org/10.1021/acs.est.0c00917.

Yang, X.; Bento, C. P. M.; Chen, H.; Zhang, H.; Xue, S.; Lwanga, E. H.; Zomer, P.; Ritsema, C. J.; Geissen, V. (2018). Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environmental Pollution, 242, 338–347. https://doi.org/10.1016/j.envpol.2018.07.006.

Hodson, M. E.; Duffus-Hodson, C. A.; Clark, A.; Prendergast-Miller, M. T.; Thorpe, K. L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51(8), 4714–4721. https://doi.org/10.1021/acs.est.7b00635.

Godoy, V.; Blázquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M. A. (2019). The potential of microplastics as carriers of metals. Environmental Pollution, 255, 113363. https://doi.org/10.1016/j.envpol.2019.113363.

Wang, Q.; Zhang, Y.; Wangjin, X.; Wang, Y.; Meng, G.; Chen, Y. (2020). The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. Journal of Environmental Sciences, 87, 272–280. https://doi.org/10.1016/j.jes.2019.07.006.

Liu, G.; Dave, P. H.; Kwong, R. W. M.; Wu, M.; Zhong, H. (2021). Influence of microplastics on the mobility, bioavailability, and toxicity of heavy metals: A review. Bulletin of Environmental Contamination and Toxicology, 107(4), 710–721. https://doi.org/10.1007/s00128-021-03339-9.

Tang, K. H. D.; Li, R. (2024). The effects of plastisphere on the physicochemical properties of microplastics. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-024-03059-4.

Lang, M.; Yu, X.; Liu, J.; Xia, T.; Wang, T.; Jia, H.; Guo, X. (2020). Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Science of The Total Environment, 722, 137762. https://doi.org/10.1016/j.scitotenv.2020.137762.

Li, M.; Wu, D.; Wu, D.; Guo, H.; Han, S. (2021). Influence of polyethylene-microplastic on environmental behaviors of metals in soil. Environmental Science and Pollution Research, 28(22), 28329–28336. https://doi.org/10.1007/s11356-021-12718-y.

Tang, S.; Lin, L.; Wang, X.; Yu, A.; Sun, X. (2021). Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu(II), Ni(II), Zn(II)) in aqueous solutions. Journal of Hazardous Materials, 403, 123548. https://doi.org/10.1016/j.jhazmat.2020.123548.

Wang, B.; Wang, P.; Zhao, S.; Shi, H.; Zhu, Y.; Teng, Y.; Jiang, G.; Liu, S. (2023). Combined effects of microplastics and cadmium on the soil-plant system: Phytotoxicity, Cd accumulation and microbial activity. Environmental Pollution, 333, 121960. https://doi.org/10.1016/j.envpol.2023.121960.

Yang, J.; Cang, L.; Sun, Q.; Dong, G.; Ata-Ul-Karim, S. T.; Zhou, D. (2019). Effects of soil environmental factors and UV aging on Cu²⁺ adsorption on microplastics. Environmental Science and Pollution Research, 26(22), 23027–23036. https://doi.org/10.1007/s11356-019-05643-8.

Cao, Y.; Zhao, M.; Ma, X.; Song, Y.; Zuo, S.; Li, H.; Deng, W. (2021). A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Science of The Total Environment, 788, 147620. https://doi.org/10.1016/j.scitotenv.2021.147620.

Zeb, A.; Liu, W.; Meng, L.; Lian, J.; Wang, Q.; Lian, Y.; Chen, C.; Wu, J. (2022). Effects of polyester microfibers (PMFs) and cadmium on lettuce (Lactuca sativa) and the rhizospheric microbial communities: A study involving physio-biochemical properties and metabolomic profiles. Journal of Hazardous Materials, 424, 127405. https://doi.org/10.1016/j.jhazmat.2021.127405.

Kajal, S.; Thakur, S. (2024). Coexistence of microplastics and heavy metals in soil: Occurrence, transport, key interactions and effect on plants. Environmental Research, 262, 119960. https://doi.org/10.1016/j.envres.2024.119960.

About this article

SUBMITTED: 25 May 2025
ACCEPTED: 24 June 2025
PUBLISHED: 28 June 2025
SUBMITTED to ACCEPTED: 30 days
DOI: https://doi.org/10.53623/tasp.v5i1.703

Cite this article
Tang, K. H. D. (2025). Microplastics in Soil: Uncovering Their Hidden Chemical Implications. Tropical Aquatic and Soil Pollution, 5(1), 88–109. https://doi.org/10.53623/tasp.v5i1.703
Keywords
Citations
0
Share this article