Skip to main content

Biodegradation of Microplastics: Mechanisms, Challenges, and Future Prospects for Environmental Remediation

Author(s): Novlina Finayeva 1 , Risky Ayu Kristanti 2 ORCID https://orcid.org/0000-0003-2096-3923 , Kong Rachana 3 , Ummi Mardhiah Batubara 4
Author(s) information:
1 Al-Farabi Kazakh National University, 71, Al-Farabi Avenue, 050040 Almaty, Kazakhstan
2 Research Center for Oceanography, National Reserch and Innovation Agency, Pasir Putih I, Jakarta, 14430, Indonesia
3 United Nations Institute for Training and Research (UNITAR), 7 bis, Avenue de la Paix, CH-1202 Geneva 2, Switzerland
4 Marine Microbiology Laboratory, Department of Marine Science, Faculty of Fisheries and Marine Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia

Corresponding author

Microplastics are widespread environmental pollutants detected in aquatic, terrestrial, and atmospheric ecosystems. Their persistence, coupled with their potential to bioaccumulate and release toxic additives, raised serious concerns for both environmental and human health. This study aimed to assess microbial biodegradation as a viable strategy for reducing microplastic pollution. The research focused on the mechanisms through which microorganisms, particularly bacteria and fungi, degraded plastic polymers under various environmental conditions. Several microbial strains demonstrated the ability to degrade polymers such as polyethylene, polystyrene, and polyvinyl chloride, albeit at varying efficiencies. Environmental parameters such as temperature, pH, oxygen availability, and nutrient concentration, were found to significantly influence the rate and extent of microbial degradation. Despite these promising findings, the overall degradation rates observed in natural environments remained low. Moreover, challenges related to microbial specificity, metabolic limitations, and the scalability of degradation processes hindered the practical application of microbial treatments on a large scale. The complexity of polymer structures and the additives used in plastic manufacturing further complicated microbial breakdown. To overcome these barriers, future research should prioritize genetic engineering of microbial strains and the optimization of bioprocesses to improve degradation efficiency. Such advancements could pave the way for sustainable and effective biotechnological solutions to mitigate microplastic pollution.

Zhang, T.; Jiang, B.; Xing, Y.; Ya, H.; Lv, M.; Wang, X. (2022). Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms. Environmental Science and Pollution Research, 29, 16830‒16859. https://doi.org/10.1007/s11356-022-18504-8.

Cai, Z.; Wang, J.; Li, Y.; Chen, Q.; Zhang, Y.; Liu, H. (2023). Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms, 11(7), 1661. https://doi.org/10.3390/microorganisms11071661.

Bridson, J.H.; Abbel, R.; Smith, D.A.; Northcott, G.L.; Gaw, S. (2023). Release of additives and non-intentionally added substances from microplastics under environmentally relevant conditions. Environmental Advances, 12, 100359. https://doi.org/10.1016/j.envadv.2023.100359.

Temporiti, M.E.E.; Nicola, L.; Nielsen, E.; Tosi, S. (2022). Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms, 10(6), 1180. https://doi.org/10.3390/microorganisms10061180.

Zeenat; Elahi, A.; Bukhari, D.A.; Shamim, S.; Rehman, A. (2021). Plastics degradation by microbes: A sustainable approach. Journal of King Saud University - Science, 33(6), 101538. https://doi.org/10.1016/j.jksus.2021.101538.

Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. (2022). Biodegradation of plastic polymers by fungi: a brief review. Bioresources and Bioprocessing, 9(1), 42. https://doi.org/10.1186/s40643-022-00532-4.

Jain, R.; Kumar, S.; Singh, P.; Sharma, A.; Gupta, V. (2023). Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction. Science of The Total Environment, 905, 167098. https://doi.org/10.1016/j.scitotenv.2023.167098.

Tania, M.; Vijaya Anand, A. (2023). The implementation of microbes in plastic biodegradation. Journal of Umm Al-Qura University for Applied Sciences, 11, 208‒218. https://doi.org/10.1007/s43994-023-00077-y.

Sulaiman, R.N.R.; Ahmad, S.; Lim, K.T.; Wong, C.Y.; Tan, L.L. (2023). Microplastics in Malaysia's Aquatic Environment: Current Overview and Future Perspectives. Global Challenges, 7(8), 2300047. https://doi.org/10.1002/gch2.202300047.

Jiang, J.Q. (2018). Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption, 13, 16‒23. https://doi.org/10.1016/j.spc.2017.11.003.

Noor, N.S.; Ismail, A.; Mohd, K.; Hassan, R.; Abdullah, S. (2024). Microplastic Pollution in Malaysia: Status and Challenges - A Brief Overview Malaysian Journal of Analytical Sciences, 28(3), 569‒585.

Ziani, K.; Ioniță-Mîndrican, C.B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E. (2023). Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients, 15(3), 617. https://doi.org/10.3390/nu15030617.

Yang, X.; Zhou, Y.; Xia, R.; Liao, J.; Liu, J.; Yu, P. (2024). Microplastics and chemical leachates from plastic pipes are associated with increased virulence and antimicrobial resistance potential of drinking water microbial communities. Journal of Hazardous Materials, 463, 132900. https://doi.org/10.1016/j.jhazmat.2023.132900.

Arpia, A.; Chen, W.H.; Ubando, A.T.; Naqvi, S.R.; Culaba, A.B. (2021). Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: A state-of-the-art review. Journal of Hazardous Materials, 418, 126381. https://doi.org/10.1016/j.jhazmat.2021.126381.

Chen, Y.; Li, X.; Wang, Z.; Zhang, L.; Wu, J. (2024). Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Research, 3(1), 1‒23. https://doi.org/10.1007/s44246-024-00124-1.

Liang, Y.; Lehmann, A.; Yang, G.; Leifheit, E.F.; Rillig, M.C. (2021). Effects of Microplastic Fibers on Soil Aggregation and Enzyme Activities Are Organic Matter Dependent. Frontiers in Environmental Science, 9, 650155. https://doi.org/10.3389/fenvs.2021.650155.

Zhao, T.; Lozano, Y.M.; Rillig, M.C. (2021). Microplastics Increase Soil pH and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time. Frontiers in Environmental Science, 9, 675803. https://doi.org/10.3389/fenvs.2021.675803.

Lamichhane, G.; Acharya, A.; Marahatha, R.; Modi, B.; Paudel, R.; Adhikari, A. (2022). Microplastics in environment: Global concern, challenges, and controlling measures. International Journal of Environmental Science and Technology, 20(4), 4673‒4694. https://doi.org/10.1007/s13762-022-04261-1.

Makhdoumi, P.; Pirsaheb, M.; Amin, A.A.; Kianpour, S.; Hossini, H. (2023). Microplastic pollution in table salt and sugar: Occurrence, qualification and quantification and risk assessment. Journal of Food Composition and Analysis, 119, 105261. https://doi.org/10.1016/j.jfca.2023.105261.

Li, Y.; Tao, L.; Wang, Q.; Wang, F.; Li, G.; Song, M. (2023). Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environment & Health, 1(4), 249–257. https://doi.org/10.1021/envhealth.3c00052.

Ghosh, S.; Sinha, J.K.; Ghosh, S.; Vashisth, K.; Han, S.; Bhaskar, R. (2023). Microplastics as an Emerging Threat to the Global Environment and Human Health. Sustainability, 15(14), 10821. https://doi.org/10.3390/su151410821.

Tong, X.; Wang, X.; Li, J.; Liu, S.; Zhang, W. (2022). Polyethylene microplastics cooperate with Helicobacter pylori to promote gastric injury and inflammation in mice. Chemosphere, 288, 132579. https://doi.org/10.1016/j.chemosphere.2021.132579.

Yang, W.; Gao, X.; Wu, Y.; Wan, L.; Tan, L.; Yuan, W. (2022). Impacts of microplastics on immunity. Frontiers in Toxicology, 4, 956885. https://doi.org/10.3389/ftox.2022.956885.

Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. (2020). A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. International Journal of Environmental Research and Public Health, 17(4), 1212. https://doi.org/10.3390/ijerph17041212.

Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179‒199. https://doi.org/10.1016/j.jhazmat.2017.10.014.

Kole, P.J.; Löhr, A.J.; Van Belleghem, F.; Ragas, A.M. (2017). Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. International Journal of Environmental Research and Public Health, 14(10), 1265. https://doi.org/10.3390/ijerph14101265.

9 Ways To Reduce Your Microplastic Pollution & Consumption (accessed on 1 January 2024) Available online: https://www.perchenergy.com/blog/lifestyle/reduce-microplastic-pollution-consumption.

Rabiu, M.K.; Jaeger-Erben, M. (2024). Reducing single-use plastic in everyday social practices: Insights from a living lab experiment. Resources, Conservation and Recycling, 200, 107303. https://doi.org/10.1016/j.resconrec.2023.107303.

Types of Screening in Wastewater Treatment. (accessed on 1 January 2024) Available online: https://aosts.com/types-wastewater-screening/.

What Is Sedimentation in Water Treatment (accessed on 1 January 2024) Available online: https://aosts.com/what-is-sedimentation-in-water-treatment-types-settling-tanks/.

Kyzas, G.; Matis, K. (2018). Flotation in Water and Wastewater Treatment. Processes, 6(8), 116. https://doi.org/10.3390/pr6080116.

Wastewater treatment - Primary treatment. (accessed on 1 January 2024) Available online: https://www.britannica.com/technology/wastewater-treatment/Primary-treatment.

Abualhail, S.; Mohammed, R.N.; Xiwu, L. (2017). Integrated real-time control strategy in multi-tank A2O process for biological nutrient removal treating real domestic wastewater. Arabian Journal of Chemistry, 10, S1041-S1054. https://doi.org/10.1016/j.arabjc.2013.01.009.

Thorat, B.N.; Sonwani, R.K. (2022). Current technologies and future perspectives for the treatment of complex petroleum refinery wastewater: A review. Bioresource Technology, 355, 127263. https://doi.org/10.1016/j.biortech.2022.127263.

Chabi, K.; Rocha-Santos, T.; Duarte, A.C.; Lopes, I.; Pereira, R. (2024). Rapid sand filtration for <10 μm-sized microplastic removal in tap water treatment: Efficiency and adsorption mechanisms. Science of The Total Environment, 912, 169074. https://doi.org/10.1016/j.scitotenv.2023.169074.

Miino, M.C.; Galafassi, S.; Zullo, R.; Torretta, V.; Rada, E.C. (2024). Microplastics removal in wastewater treatment plants: A review of the different approaches to limit their release in the environment. Science of The Total Environment, 930, 172675. https://doi.org/10.1016/j.scitotenv.2024.172675.

Dos Santos, N.de O.; Busquets, R.; Campos, L.C. (2023). Insights into the removal of microplastics and microfibres by Advanced Oxidation Processes. Science of The Total Environment, 861, 160665. https://doi.org/10.1016/j.scitotenv.2022.160665.

Singh, S.; Kalyanasundaram, M.; Diwan, V. (2021). Removal of microplastics from wastewater: available techniques and way forward. Water Science and Technology, 84(12), 3689‒3704. https://doi.org/10.2166/wst.2021.472.

Mastropietro, T.F. (2023). Metal-organic frameworks and plastic: an emerging synergic partnership. Science and Technology of Advanced Materials, 24(1), 2189890. https://doi.org/10.1080/14686996.2023.2189890.

Dey, T.K.; Hou, J.; Sillanpää, M.; Pramanik, B.K. (2023). Metal-organic framework membrane for waterborne micro/nanoplastics treatment. Chemical Engineering Journal, 474, 145715. https://doi.org/10.1016/j.cej.2023.145715.

Lin, J.; Zhang, Y.; Zhao, L.; Li, W.; Liu, J. (2022). TiO2@carbon microsphere core-shell micromotors for photocatalytic water remediation. Optical Materials, 124, 111989. https://doi.org/10.1016/j.optmat.2022.111989.

He, Y.; Li, H.; Xiao, X.; Zhao, X. (2021). Polymer Degradation: Category, Mechanism and Development Prospect. E3S Web of Conferences, 290, 01012. https://doi.org/10.1051/e3sconf/202129001012.

Gilani, E.; Sayadi, S.; Zouari, N.; Al-Ghouti, M.A. (2023). Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications. Bioresource Technology Reports, 24, 101606. https://doi.org/10.1016/j.biteb.2023.101606.

Jaduan, S.; Bansal, S.; Sonthalia, A.; Rai, A.K.; Singh, S.P. (2022). Biodegradation of plastics for sustainable environment. Bioresource Technology, 347, 126697. https://doi.org/10.1016/j.biortech.2022.126697.

Reineke, W. (2001). Aerobic and Anaerobic Biodegradation Potentials of Microorganisms. In: Biodegradation and Persistence. The Handbook of Environmental Chemistry; Beek, B., Eds.; Springer, Berlin, Heidelberg. https://doi.org/10.1007/10508767_1.

Rana, I. (2019). Usage of Potential Micro-organisms for Degradation of Plastics. Open Journal of Environmental Biology, 4(1), 7‒15. https://doi.org/10.17352/ojeb.000010.

Chinaglia, S.; Esposito, E.; Tosin, M.; Pecchiari, M.; Degli Innocenti, F. (2024). Biodegradation of plastics in soil: the effect of water content. Polymer Degradation and Stability, 222, 110691. https://doi.org/10.1016/j.polymdegradstab.2024.110691.

Temperature Effects on Bacterial Growth. (accessed on 1 January 2024) Available online: https://bio.libretexts.org/Courses/Prince_Georges_Community_College/PGCC_Microbiology/08%3A_Microbial_Growth/8.02%3A_Factors_that_Affect_Bacterial_Growth/8.2.01%3A_Temperature_Effects_on_Bacterial_Growth.

Titone, V.; Correnti, A.; La Mantia, F.P. (2021). Effect of Moisture Content on the Processing and Mechanical Properties of a Biodegradable Polyester. Polymers, 13(10), 1616. https://doi.org/10.3390/polym13101616.

Bahmani, F.; Ataei, S.A.; Mikaili, M.A. (2018). The Effect of Moisture Content Variation on the Bioremediation of Hydrocarbon Contaminated Soils: Modeling and Experimental Investigation. Journal of Environmental Analytical Chemistry, 5(2), 1000236. https://doi.org/10.4172/2380-2391.

Lang, S.; Tarayre, C.; Delvigne, F.; Druart, P.; Ongena, M.; Thonart, P. (2016). The Effect of Nutrients on the Degradation of Hydrocarbons in Mangrove Ecosystems by Microorganisms. International Journal of Environmental Research, 10(4), 583‒592. https://ijer.ut.ac.ir/article_59903_0f6fe585f445848410e56417ff3eb191.pdf.

Cavaliere, S.; Feng, S.; Soyer, O.S.; Jiménez, J.I. (2017). Cooperation in microbial communities and their biotechnological applications. Environmental Microbiology, 19(8), 2949‒2963. https://doi.org/10.1111/1462-2920.13767.

Kebede, G.; Tafese, T.; Abda, E.M.; Kamaraj, M.; Assefa, F. (2021). Factors Influencing the Bacterial Bioremediation of Hydrocarbon Contaminants in the Soil: Mechanisms and Impacts. Journal of Chemistry, 2021(1), 1‒17. https://doi.org/10.1155/2021/9823362.

Patwary, A.S.; Surid, S.M.; Gafur, M.A. (2020). Properties and Applications of Biodegradable Polymers. Journal of Research Updates in Polymer Science, 9(9), 32‒41. https://doi.org/10.6000/1929-5995.2020.09.03.

Jiang, R.; Lu, G.; Yang, H.; Wang, P.; Dang, Z. (2023). Insight into the degradation process of functional groups modified polystyrene microplastics with dissolvable BiOBr-OH semiconductor-organic framework. Chemical Engineering Journal, 470, 144401. https://doi.org/10.1016/j.cej.2023.144401.

Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; de Oliveira, T.V. (2023). Biodegradation of Polymers: Stages, Measurement, Standards and Prospects. Macromol, 3(2), 371‒399. https://doi.org/10.3390/macromol3020023.

Joutey, T.; Bahafid, W.; Sayel, H.; El Ghachtouli, N. (2013). Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms. Biodegradation-Life of Science, 1, 289‒320.

Uddin, M.K.; Novembre, L.; Greco, A.; Sannino, A. (2024). Polyhydroxyalkanoates, A prospective solution in the textile industry - A review. Polymer Degradation and Stability, 219, 110619. https://doi.org/10.1016/j.polymdegradstab.2023.110619.

Kwon, H.J.; Hidayaturrahman, H.; Peera, S.G.; Lee, T.G. (2022). Elimination of Microplastics at Different Stages in Wastewater Treatment Plants. Water, 14(15), 2404. https://doi.org/10.3390/w14152404.

Iyare, U.; Ouki, S.K.; Bond, T. (2020). Microplastics removal in wastewater treatment plants: a critical review. Environmental Science: Water Research & Technology, 6(10), 2664‒2675. https://doi.org/10.1039/D0EW00397B.

Kurt, Z.; Clayton, P.; James, A. (2022). Effectiveness of microplastics removal in wastewater treatment plants: A critical analysis of wastewater treatment processes. Journal of Environmental Chemical Engineering, 10(3), 107831. https://doi.org/10.1016/j.jece.2022.107831.

Sarkar, D.J.; Das, S.; Das, K.; Das, P.; Chowdhury, A. (2021). Microplastics removal efficiency of drinking water treatment plant with pulse clarifier. Journal of Hazardous Materials, 413, 125347. https://doi.org/10.1016/j.jhazmat.2021.125347.

Tang, K.H.D.; Hadibarata, T. (2021). Microplastics removal through water treatment plants: Its feasibility, efficiency, future prospects and enhancement by proper waste management. Environmental Challenges, 5, 100264. https://doi.org/10.1016/j.envc.2021.100264.

Mandal, M.; Roy, A.; Popek, R.; Sarkar, A. (2024). Micro- and Nano- Plastic Degradation by Bacterial Enzymes: A Solution to 'White Pollution.' The Microbe, 3, 100072. https://doi.org/10.1016/j.microb.2024.100072.

Priya, K.; Kumar, S.; Verma, R.; Sharma, P.; Singh, J. (2022). Algal degradation of microplastic from the environment: Mechanism, challenges, and future prospects. Algal Research, 67, 102848. https://doi.org/10.1016/j.algal.2022.102848.

Nasir, M.S.; Abdullah, S.; Ismail, M.; Rahim, N.F.; Mohd, K. (2024). Innovative technologies for removal of micro plastic: A review of recent advances. Heliyon, 10(4), e25883. https://doi.org/10.1016/j.heliyon.2024.e25883.

About this article

SUBMITTED: 29 April 2025
ACCEPTED: 07 June 2025
PUBLISHED: 10 June 2025
SUBMITTED to ACCEPTED: 40 days
DOI: https://doi.org/10.53623/tasp.v5i1.671

Cite this article
Finayeva, N. ., Kristanti, R. A. ., Rachana, K. ., & Batubara, U. M. . (2025). Biodegradation of Microplastics: Mechanisms, Challenges, and Future Prospects for Environmental Remediation. Tropical Aquatic and Soil Pollution, 5(1), 53–70. https://doi.org/10.53623/tasp.v5i1.671
Keywords
Accessed
125
Citations
0
Share this article