Biochar gained significant attention as an eco-friendly and effective solution for remediating contaminated soils, particularly those impacted by pharmaceutical persistent pollutants (PPPs). These pollutants, known for their resistance to natural degradation and tendency to accumulate in soil, posed serious risks to both human health and ecosystems. To address this issue, researchers proposed the use of biochar as a remediation technology to remove PPPs through adsorption. As an efficient sorbent, biochar demonstrated the ability to immobilize pharmaceuticals in contaminated soils, thereby reducing their bioavailability and mobility, and ultimately mitigating their environmental impact. This review aimed to provide a comprehensive overview of the current understanding of PPPs contamination and the potential of biochar for remediation. It first summarized the occurrence of pharmaceutical pollutants in various countries and identified their primary sources. It then examined the environmental fate of these pollutants and outlined the key challenges associated with their management. The mechanisms by which biochar adsorbed pharmaceutical compounds were discussed in detail, followed by a case study that illustrated the effectiveness of this technology in practical applications. This review also evaluated the advantages and disadvantages of using biochar for remediation, along with the practical challenges encountered during its implementation. Future directions highlighted included developing methods for extracting toxic residues and enhancing the performance of biochar through chemical or structural modifications.
Gworek, B.; Kijeńska, M.; Wrzosek, J.; Graniewska, M. (2021). Pharmaceuticals in the soil and plant environment: A review. Water, Air, Soil Pollution, 232(4), 1–17. https://doi.org/10.1007/S11270-020-04954-8/TABLES/4.
Monisha, R.S.; Mani, R.L.; Sivaprakash, B.; Rajamohan, N.; Vo, D.V.N. (2021). Green remediation of pharmaceutical wastes using biochar: A review. Environmental Chemistry Letters, 20(1), 681–704. https://doi.org/10.1007/S10311-021-01348-Y.
Boxall, A.B.A.; Rudd, M.A.; Brooks, B. W.; Caldwell, D.J.; Choi, K.; Hickmann, S.; Innes, E.; Ostapyk, K.; Staveley, J.P.; Verslycke, T.; Ankley, G.T.; Beazley, K.F.; Belanger, S.E.; Berninger, J.P.; Carriquiriborde, P.; Coors, A.; DeLeo, P.C.; Dyer, S.D.; Ericson, J.F.; Van Der Kraak, G. (2012) Pharmaceuticals and personal care products in the environment: What are the big questions? Environmental Health Perspectives, 120(9), 1221–1229. https://doi.org/10.1289/EHP.1104477/SUPPL_FILE/EHP.1104477.S001.PDF.
Seilsepour, M.; Bigdeli, M. (2008). Investigation of metals accumulation in some vegetables irrigated with waste water in Shahre Rey-Iran and toxicological implications. Journal of Agricultural and Environmental Science, 4(1), 86–92.
Benotti, M.J.; Snyder, S.A. (2009) Pharmaceuticals and endocrine disrupting compounds: Implications for ground water replenishment with recycled water. Environmental Health Perspectives, 47(4).
Bustos Bustos, E.; Sandoval-González, A.; Martínez-Sánchez, C. (2022). Detection and treatment of persistent pollutants in water: General review of pharmaceutical products. ChemElectroChem, 9(12). https://doi.org/10.1002/CELC.202200188.
Shakya, A.; Swain, S.; Agarwal, T. (2023). Remediation of pharmaceutical and personal care products in soil using biochar. pp. 375–401. https://doi.org/10.1007/978-3-031-04931-6_15.
Nguyen, M.K.; Lin, C.; Nguyen, H.L.; Hung, N.T.Q.; La, D.D.; Nguyen, X.H.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. (2023). Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: Challenges and environmentally friendly solutions. Science of The Total Environment, 899, 165323. https://doi.org/10.1016/J.SCITOTENV.2023.165323.
Xu, X.; Cao, X.; Zhao, L.; Wang, H.; Yu, H.; Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358–368. https://doi.org/10.1007/S11356-012-0873-5/TABLES/4.
Liu, Y.; Yang, M.; Wu, Y.; Wang, H.; Chen, Y.; Wu, W. (2011). Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal of Soils and Sediments, 11(6), 930–939. https://doi.org/10.1007/S11368-011-0376-X/FIGURES/8.
Wang, H.; Lin, K.; Hou, Z.; Richardson, B.; Gan, J. (2010). Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. Journal of Soils and Sediments, 10(2), 283–289. https://doi.org/10.1007/S11368-009-0111-Z/TABLES/2.
Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. (2020). Biochar for wastewater treatment—Conversion technologies and applications. Applied Sciences, 10(10), 3492. https://doi.org/10.3390/APP10103492.
Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. (2011). Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112, 103–143. https://doi.org/10.1016/B978-0-12-385538-1.00003-2.
Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144(1), 175–187. https://doi.org/10.1016/J.AGEE.2011.08.015.
Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143–144. https://doi.org/10.1038/447143a.
Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N. S.; Pei, J.; Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20(12), 8472–8483. https://doi.org/10.1007/S11356-013-1659-0/FIGURES/5.
Caban, M.; Folentarska, A.; Lis, H.; Kobylis, P.; Bielicka-Giełdoń, A.; Kumirska, J.; Ciesielski, W.; Stepnowski, P. (2020). Critical study of crop-derived biochars for soil amendment and pharmaceutical ecotoxicity reduction. Chemosphere, 248, 125976. https://doi.org/10.1016/J.CHEMOSPHERE.2020.125976.
Ternes, T.A.; Bonerz, M.; Herrmann, N.; Teiser, B.; Andersen, H.R. (2007). Irrigation of treated wastewater in Braunschweig, Germany: An option to remove pharmaceuticals and musk fragrances. Chemosphere, 66(5), 894–904. https://doi.org/10.1016/J.CHEMOSPHERE.2006.06.035.
Brausch, J.M.; Connors, K.A.; Brooks, B.W.; Rand, G.M. (2012). Human pharmaceuticals in the aquatic environment: A review of recent toxicological studies and considerations for toxicity testing. Reviews of Environmental Contamination and Toxicology, 218, 1–99. https://doi.org/10.1007/978-1-4614-3137-4_1/FIGURES/2_1.
Pérez-Pereira, A.; Carrola, J. S.; Tiritan, M.E.; Ribeiro, C. (2024). Enantioselectivity in ecotoxicity of pharmaceuticals, illicit drugs, and industrial persistent pollutants in aquatic and terrestrial environments: A review. Science of The Total Environment, 912, 169573. https://doi.org/10.1016/J.SCITOTENV.2023.169573.
Caban, M.; Stepnowski, P. (2021). How to decrease pharmaceuticals in the environment? A review. Environmental Chemistry Letters, 19(4), 3115–3138. https://doi.org/10.1007/s10311-021-01194-y.
Chen, F.; Ying, G.G.; Kong, L.X.; Wang, L.; Zhao, J.L.; Zhou, L.J.; Zhang, L.J. (2011). Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Environmental Pollution, 159(6), 1490–1498. https://doi.org/10.1016/J.ENVPOL.2011.03.016.
Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. (2012). Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1262, 160–168. https://doi.org/10.1016/J.CHROMA.2012.09.024.
Gibson, R.; Durán-Álvarez, J.C.; Estrada, K.L.; Chávez, A.; Jiménez Cisneros, B. (2010). Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere, 81(11), 1437–1445. https://doi.org/10.1016/J.CHEMOSPHERE.2010.09.006.
Kinney, C.A.; Furlong, E.T.; Kolpin, D.W.; Burkhardt, M.R.; Zaugg, S.D.; Werner, S.L.; Bossio, J.P.; Benotti, M.J. (2008). Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environmental Science & Technology, 42(6), 1863–1870. https://doi.org/10.1021/es702304c.
Wu, C.; Spongberg, A.L.; Witter, J.D.; Fang, M.; Czajkowski, K.P. (2010). Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environmental Science & Technology, 44(16), 6157–6161. https://doi.org/10.1021/ES1011115.
Loke, M.L.; Tjornelund, J.; Halling-Sorensen, B. (2002). Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 48(3), 351–361. https://doi.org/10.1016/S0045-6535(02)00078-4.
Ivanová, L.; Mackuľak, T.; Grabic, R.; Golovko, O.; Koba, O.; Staňová, A. V.; Szabová, P.; Grenčíková, A.; Bodík, I. (2018). Pharmaceuticals and illicit drugs – A new threat to the application of sewage sludge in agriculture. Science of The Total Environment, 634, 606–615. https://doi.org/10.1016/J.SCITOTENV.2018.04.001.
Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. (2012). Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environmental Pollution, 163, 287–303. https://doi.org/10.1016/J.ENVPOL.2011.12.034.
Li, W.C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution, 187, 193–201. https://doi.org/10.1016/J.ENVPOL.2014.01.015.
Bueno, M.J.M.; Gomez, M.J.; Herrera, S.; Hernando, M.D.; Agüera, A.; Fernández-Alba, A.R. (2012). Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environmental Pollution, 164, 267–273. https://doi.org/10.1016/J.ENVPOL.2012.01.038.
Murray, K.E.; Thomas, S.M.; Bodour, A.A. (2010). Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environmental Pollution, 158(12), 3462–3471. https://doi.org/10.1016/J.ENVPOL.2010.08.009.
Xu, J.; Wu, L.; Chang, A. C. (2009). Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 77(10), 1299–1305. https://doi.org/10.1016/J.CHEMOSPHERE.2009.09.063.
Al-Farsi, R.S.; Ahmed, M.; Al-Busaidi, A.; Choudri, B.S. (2017). Translocation of pharmaceuticals and personal care products (PPCPs) into plant tissues: A review. Emerging Contaminants, 3(4), 132–137. https://doi.org/10.1016/J.EMCON.2018.02.001.
Ravikumar, Y.; Yun, J.; Zhang, G.; Zabed, H. M.; Qi, X. (2022). A review on constructed wetlands-based removal of pharmaceutical contaminants derived from non-point source pollution. Environmental Technology & Innovation, 26, 102504. https://doi.org/10.1016/J.ETI.2022.102504.
Gao, L.; Shi, Y.; Li, W.; Niu, H.; Liu, J.; Cai, Y. (2012). Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere, 86(6), 665–671. https://doi.org/10.1016/J.CHEMOSPHERE.2011.11.019.
Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sánchez, R.; Ventura, F.; Petrovic, M.; Barcelo, D. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45(3), 1165–1176. https://doi.org/10.1016/J.WATRES.2010.11.010.
Wu, Y.; Gong, Z.; Wang, S.; Song, L. (2023). Occurrence and prevalence of antibiotic resistance genes and pathogens in an industrial park wastewater treatment plant. Science of The Total Environment, 880, 163278. https://doi.org/10.1016/J.SCITOTENV.2023.163278.
Mishra, S.; Singh, A.K.; Cheng, L.; Hussain, A.; Maiti, A. (2023). Occurrence of antibiotics in wastewater: Potential ecological risk and removal through anaerobic–aerobic systems. Environmental Research, 226, 115678. https://doi.org/10.1016/J.ENVRES.2023.115678.
Kühne, M.; Hamscher, G.; Körner, U.; Schedl, D.; Wenzel, S. (2001). Formation of anhydrotetracycline during a high-temperature treatment of animal-derived feed contaminated with tetracycline. Food Chemistry, 75(4), 423–429. https://doi.org/10.1016/S0308-8146(01)00230-8.
Aydın, S.; Ulvi, A.; Bedük, F.; Aydın, M.E. (2022). Pharmaceutical residues in digested sewage sludge: Occurrence, seasonal variation and risk assessment for soil. Science of The Total Environment, 817, 152864. https://doi.org/10.1016/J.SCITOTENV.2021.152864.
Haider, F.U.; Wang, X.; Zulfiqar, U.; Farooq, M.; Hussain, S.; Mehmood, T. Naveed, M.; Li, Y.; Liqun, C.; Saeed, Q.; Ahmad, I.; Mustafa, A. (2022). Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. Ecotoxicology and Environmental Safety, 248, 114322. https://doi.org/10.1016/J.ECOENV.2022.114322.
Verma, M.; Singh, P.; Dhanorkar, M. (2024). Remediation of emerging pollutants using biochar derived from aquatic biomass for sustainable waste and pollution management: A review. Journal of Chemical Technology & Biotechnology, 99(2), 330–342. https://doi.org/10.1002/JCTB.7548.
Khanday, W.A.; Ahmed, M.J.; Okoye, P.U.; Hummadi, E.H.; Hameed, B.H. (2019). Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic. Bioresource Technology, 280, 255–259. https://doi.org/10.1016/J.BIORTECH.2019.02.003.
Xie, M.; Chen, W.; Xu, Z.; Zheng, S.; Zhu, D. (2014). Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environmental Pollution, 186, 187–194. https://doi.org/10.1016/J.ENVPOL.2013.11.022.
Wang, W.; Tian, J.; Zhu, Z.; Zhu, C.; Liu, B.; Hu, C. (2021). Insight into quinolones and sulfonamides degradation, intermediate product identification and decomposition pathways with the assistance of Bi2MoO6/Bi2WO6/MWCNTs photocatalyst. Process Safety and Environmental Protection, 147, 527–546. https://doi.org/10.1016/J.PSEP.2020.11.043.
Wei, Z.; Liu, J.; Shangguan, W. (2020). A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chinese Journal of Catalysis, 41(10), 1440–1450. https://doi.org/10.1016/S1872-2067(19)63448-0.
Zhou, C.; Zeng, Z.; Zeng, G.; Huang, D.; Xiao, R.; Cheng, M.; Zhang, C.; Xiong, W.; Lai, C.; Yang, Y.; Wang, W.; Yi, H.; Li, B. (2019). Visible-light-driven photocatalytic degradation of sulfamethazine by surface engineering of carbon nitride: Properties, degradation pathway and mechanisms. Journal of Hazardous Materials, 380, 120815. https://doi.org/10.1016/J.JHAZMAT.2019.120815.
Chu, X. M.; Wang, C.; Liu, W.; Liang, L.L.; Gong, K.K.; Zhao, C. Y.; Sun, K.L. (2019). Quinoline and quinolone dimers and their biological activities: An overview. European Journal of Medicinal Chemistry, 161, 101–117. https://doi.org/10.1016/J.EJMECH.2018.10.035.
Bax, R.P. (1997). Antibiotic resistance: A view from the pharmaceutical industry. Clinical Infectious Diseases, 24 (Supplement_1), S151–S153. https://doi.org/10.1093/CLINIDS/24.SUPPLEMENT_1.S151.
Baccl, E.; Calamarl, D.; Gaggl, C.; Vighi, M. (1990). Bioconcentration of organic chemical vapors in plant leaves: Experimental measurements and correlation. Environmental Science & Technology, 24(6), 885–889. https://doi.org/10.1021/ES00076A015/ASSET/ES00076A015.FP.PNG_V03.
Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; Mustafa, A. (2021). Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environmental Research, 197, 111031. https://doi.org/10.1016/J.ENVRES.2021.111031.
Varjani, S.; Kumar, G.; Rene, E.R. (2019). Developments in biochar application for pesticide remediation: Current knowledge and future research directions. Journal of Environmental Management, 232, 505–513. https://doi.org/10.1016/J.JENVMAN.2018.11.043.
Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. https://doi.org/10.1016/J.CHEMOSPHERE.2014.12.058.
Essandoh, M.; Kunwar, B.; Pittman, C.U.; Mohan, D.; Mlsna, T. (2015). Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chemical Engineering Journal, 265, 219–227. https://doi.org/10.1016/J.CEJ.2014.12.006.
Trinh, B.S.; Werner, D.; Reid, B.J. (2017). Application of a full-scale wood gasification biochar as a soil improver to reduce organic pollutant leaching risks. Journal of Chemical Technology & Biotechnology, 92(8), 1928–1937. https://doi.org/10.1002/JCTB.5219.
Ji, L.; Chen, W.; Duan, L.; Zhu, D. (2009). Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environmental Science & Technology, 43(7), 2322–2327. https://doi.org/10.1021/ES803268B/SUPPL_FILE/ES803268B_SI_001.PDF.
Pan, M.; Chu, L. M. (2017). Fate of antibiotics in soil and their uptake by edible crops. Science of The Total Environment, 599–600, 500–512. https://doi.org/10.1016/J.SCITOTENV.2017.04.214.
Liu, Q.; Li, D.; Cheng, H.; Cheng, J.; Du, K.; Hu, Y.; Chen, Y. (2021). High mesoporosity phosphorus-containing biochar fabricated from Camellia oleifera shells: Impressive tetracycline adsorption performance and promotion of pyrophosphate-like surface functional groups (C-O-P bond). Bioresource Technology, 329, 124922. https://doi.org/10.1016/J.BIORTECH.2021.124922.
Liu, H.; Xu, G.; Li, G. (2021). Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. Journal of Colloid and Interface Science, 587, 271–278. https://doi.org/10.1016/J.JCIS.2020.12.014.
Chen, Y.; Liu, J.; Zeng, Q.; Liang, Z.; Ye, X.; Lv, Y.; Liu, M. (2021). Preparation of Eucommia ulmoides lignin-based high-performance biochar containing sulfonic group: Synergistic pyrolysis mechanism and tetracycline hydrochloride adsorption. Bioresource Technology, 329, 124856. https://doi.org/10.1016/J.BIORTECH.2021.124856.
Jia, M.; Wang, F.; Bian, Y.; Jin, X.; Song, Y.; Kengara, F.O.; Xu, R.; Jiang, X. (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136, 87–93. https://doi.org/10.1016/J.BIORTECH.2013.02.098.
Kim, J.E.; Bhatia, S.K.; Song, H.J.; Yoo, E.; Jeon, H.J.; Yoon, J.Y.; Yang, Y.; Gurav, R.; Yang, Y.H.; Kim, H.J.; Choi, Y.K. (2020). Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar. Bioresource Technology, 306, 123092. https://doi.org/10.1016/J.BIORTECH.2020.123092.
Jang, H.M.; Yoo, S.; Choi, Y.K.; Park, S.; Kan, E. (2018). Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresource Technology, 259, 24–31. https://doi.org/10.1016/J.BIORTECH.2018.03.013.
Fu, D.; Chen, Z.; Xia, D.; Shen, L.; Wang, Y.; Li, Q. (2017). A novel solid digestate-derived biochar-Cu NP composite activating H2O2 system for simultaneous adsorption and degradation of tetracycline. Environmental Pollution, 221, 301–310. https://doi.org/10.1016/J.ENVPOL.2016.11.078.
Chen, T.; Luo, L.; Deng, S.; Shi, G.; Zhang, S.; Zhang, Y.; Deng, O.; Wang, L.; Zhang, J.; Wei, L. (2018). Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresource Technology, 267, 431–437. https://doi.org/10.1016/J.BIORTECH.2018.07.074.
Zhou, Y.; Liu, X.; Xiang, Y.; Wang, P.; Zhang, J.; Zhang, F.; Wei, J.; Luo, L.; Lei, M.; Tang, L. (2017). Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresource Technology, 245, 266–273. https://doi.org/10.1016/J.BIORTECH.2017.08.178.
Li, J.; Liu, Y.; Ren, X.; Dong, W.; Chen, H.; Cai, T.; Zeng, W.; Li, W.; Tang, L. (2021). Soybean residue based biochar prepared by ball milling assisted alkali activation to activate peroxydisulfate for the degradation of tetracycline. Journal of Colloid and Interface Science, 599, 631–641. https://doi.org/10.1016/J.JCIS.2021.04.074.
Oladipo, A.A.; Ifebajo, A.O. (2018). Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorber analysis. Journal of Environmental Management, 209, 9–16. https://doi.org/10.1016/J.JENVMAN.2017.12.030.
Li, Y.; Wang, Z.; Xie, X.; Zhu, J.; Li, R.; Qin, T. (2017). Removal of norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 514, 126–136. https://doi.org/10.1016/J.COLSURFA.2016.11.064.
Li, H.; Hu, J.; Meng, Y.; Su, J.; Wang, X. (2017). An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather. Science of The Total Environment, 603–604, 39–48. https://doi.org/10.1016/J.SCITOTENV.2017.06.006.
Zhang, X.; Yao, H.; Lei, X.; Lian, Q.; Holmes, W.E.; Fei, L.; Zappi, M.E.; Gang, D.D. (2021). Synergistic adsorption and degradation of sulfamethoxazole from synthetic urine by hickory-sawdust-derived biochar: The critical role of the aromatic structure. Journal of Hazardous Materials, 418, 126366. https://doi.org/10.1016/J.JHAZMAT.2021.126366.
Zhang, D.; He, Q.; Hu, X.; Zhang, K.; Chen, C.; Xue, Y. (2021). Enhanced adsorption for the removal of tetracycline hydrochloride (TC) using ball-milled biochar derived from crayfish shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, 126254. https://doi.org/10.1016/J.COLSURFA.2021.126254.
Choi, Y.K.; Choi, T.R.; Gurav, R.; Bhatia, S.K.; Park, Y.L.; Kim, H.J.; Kan, E.; Yang, Y.H. (2020). Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures. Science of The Total Environment, 710, 136282. https://doi.org/10.1016/J.SCITOTENV.2019.136282.
Borthakur, P.; Aryafard, M.; Zara, Z.; David, Ř.; Minofar, B.; Das, M.R.; Vithanage, M. (2021). Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: Implications on wastewater treatment. Journal of Environmental Management, 283, 111989. https://doi.org/10.1016/J.JENVMAN.2021.111989.
Li, S.; Harris, S.; Anandhi, A.; Chen, G. (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production, 215, 890–902. https://doi.org/10.1016/J.JCLEPRO.2019.01.106.
Li, C.; Gao, Y.; Li, A.; Zhang, L.; Ji, G.; Zhu, K.; Wang, X.; Zhang, Y. (2019). Synergistic effects of anionic surfactants on adsorption of norfloxacin by magnetic biochar derived from furfural residue. Environmental Pollution, 254, 113005. https://doi.org/10.1016/J.ENVPOL.2019.113005.
Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36(2), 1–18. https://doi.org/10.1007/S13593-016-0372-Z.
Rizwan, M.; Ali, S.; Qayyum, M.F.; Ibrahim, M.; Zia-ur-Rehman, M.; Abbas, T.; Ok, Y.S. (2015). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environmental Science and Pollution Research, 23(3), 2230–2248. https://doi.org/10.1007/S11356-015-5697-7.
Yu, X.Y.; Ying, G.G.; Kookana, R.S. (2009). Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere, 76(5), 665–671. https://doi.org/10.1016/J.CHEMOSPHERE.2009.04.001.
Kookana, R.S. (2010). The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: A review. Soil Research, 48(7), 627–637. https://doi.org/10.1071/SR10007.
Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. (2017). Environmental application of biochar: Current status and perspectives. Bioresource Technology, 246, 110–122. https://doi.org/10.1016/J.BIORTECH.2017.08.122.
Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. (2018). Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227, 146–154. https://doi.org/10.1016/J.JENVMAN.2018.08.082.
Anyanwu, I.N.; Alo, M.N.; Onyekwere, A.M.; Crosse, J.D.; Nworie, O.; Chamba, E.B. (2018). Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants. Ecotoxicology and Environmental Safety, 153, 116–126. https://doi.org/10.1016/J.ECOENV.2018.02.005.
Zhao, J.; Ren, T.; Zhang, Q.; Du, Z.; Wang, Y. (2016). Effects of biochar amendment on soil thermal properties in the North China Plain. Soil Science Society of America Journal, 80(5), 1157–1166. https://doi.org/10.2136/SSSAJ2016.01.0020.
Haider, F.U.; Coulter, J.A.; Cai, L.; Hussain, S.; Cheema, S.A.; Wu, J.; Zhang, R. (2022). An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere, 32(1), 107–130. https://doi.org/10.1016/S1002-0160(20)60094-7.
Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Núñez-Delgado, A.; Chhajro, M.A.; Kubar, K.A.; Ali, U.; Rana, M.S.; Mehmood, M.A.; Hu, R. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228, 429–440. https://doi.org/10.1016/J.JENVMAN.2018.09.006.
Zhu, Q.; Peng, X.; Huang, T. (2015). Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions. International Agrophysics, 29, 257–266. https://doi.org/10.1515/intag-2015-0023.
Kang, Z.; Jia, X.; Zhang, Y.; Kang, X.; Ge, M.; Liu, D.; Wang, C.; He, Z. (2022). A review on application of biochar in the removal of pharmaceutical pollutants through adsorption and persulfate-based AOPs. Sustainability, 14(16), 10128. https://doi.org/10.3390/SU141610128.
Rosales, E.; Meijide, J.; Pazos, M.; Sanromán, M.A. (2017). Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresource Technology, 246, 176–192. https://doi.org/10.1016/J.BIORTECH.2017.06.084.
SUBMITTED: 07 March 2025
ACCEPTED: 04 May 2025
PUBLISHED:
5 May 2025
SUBMITTED to ACCEPTED: 59 days
DOI:
https://doi.org/10.53623/tasp.v5i1.624