Skip to main content

Microbial Bioremediation of Petroleum-Contaminated Soil: A Sustainable Approach

Author(s): Ahmad Rizal Roslan Nordin 1 , Ariela Rose Navarro 2 , Juan Carlos Reyes 2 , S. Maragathavalli 3 , Risky Ayu Kristanti 4 ORCID https://orcid.org/0000-0003-2096-3923 , Retno Wulandari 5 ORCID https://orcid.org/0000-0001-8396-4312 , Seng Bunrith 6
Author(s) information:
1 Dynamic Environmental Engineering, Jalan Bawang Besar 24/35, Seksyen 24, 40300 Shah Alam, Selangor, Malaysia
2 Mindanao State University College of Forestry and Environmental Studies, Mindanao State University Main Campus, Ranao Village Rd, Marawi City, 9700 Lanao del Sur, Philippines
3 PG Department of Biochemistry, King Nandhivarman, College of Arts and Science, Thellar, Tamil Nadu 604 406, India
4 Research Center for Oceanography, National Reserch and Innovation Agency, Pasir Putih I, Jakarta, 14430, Indonesia
5 Department of Chemical Engineering, Faculty of Engineering, Mulawarman University, Samarinda, 75242 Indonesia
6 Faculty of Hydrology and Water Resource Engineering, Institute of Technology Cambodia, PO BOX 86, Russian Federation Bvld, Phnom Penh, Cambodia

Corresponding author

Petroleum-contaminated soil is a significant environmental concern caused by oil spills, leakage from storage tanks, industrial discharges, and improper disposal of petroleum products during extraction, refining, and transportation processes. Globally, approximately 6 million tonnes of petroleum are released into the environment each year, leading to soil contamination that poses toxic risks to groundwater, ecosystems, plant life, and human health. The primary aim of this paper is to evaluate the effectiveness and potential of microbial bioremediation for treating petroleum-contaminated soils, offering a sustainable alternative to conventional methods. Traditional remediation approaches such as soil excavation, washing, chemical oxidation, and incineration are often expensive and environmentally disruptive. In contrast, bioremediation using microbes is cost-effective, sustainable, and environmentally friendly. Several microbial strategies are discussed, including natural attenuation, bioaugmentation, and biostimulation. Natural attenuation relies on indigenous microbes, whereas bioaugmentation involves adding hydrocarbon-degrading microbes, and biostimulation enhances microbial activity by supplying nutrients. Among these, bioaugmentation and biostimulation are generally more effective than natural attenuation in degrading petroleum hydrocarbons. However, microbial bioremediation faces challenges such as long treatment durations, incomplete degradation with free microbes, and the need for site-specific optimal conditions. Future research should focus on enhancing microbial efficacy through genetic engineering or microbial consortia, developing faster, site-specific solutions, assessing long-term ecological impacts, and integrating bioremediation with other green technologies. Overall, microbial bioremediation presents a promising strategy for the sustainable management of petroleum-contaminated soils due to its low cost, minimal environmental impact, and adaptability. Key topics addressed include the environmental impact of petroleum pollution, conventional and biological remediation techniques, comparative effectiveness, and future development needs. The relevant keywords are: bioremediation, petroleum hydrocarbons, bioaugmentation, soil contamination, and microbial degradation.

Edo, G.I.; Okoro, O.E.; Nwosu, A.C.; Udo, N. (2024). Petroleum discovery, utilization and processing in the world and Nigeria: a comprehensive literature review. Sustainable Chemistry and Engineering, 2024. http://doi.org/10.37256/sce.5120243970.

Eneh, O.C. (2011). A review on petroleum: source, uses, processing, products and the environment. Journal of Applied Sciences, 11, 2084–2091. http://doi.org/10.3923/jas.2011.2084.2091.

Global oil consumption 2023. (accessed Oct. 22, 2024) Available online: https://www.statista.com/statistics/265239/global-oil-consumption-in-barrels-per-day/ .

OECD oil demand breakdown by sector 2022. (accessed Oct. 22, 2024) Available online: https://www.statista.com/statistics/307194/top-oil-consuming-sectors-worldwide/.

Malaysia oil reserves, production and consumption statistics. (accessed Oct. 22, 2024) Available online: https://www.worldometers.info/oil/malaysia-oil/.

Production. (accessed Oct. 22, 2024) Available online: https://www.petronas.com/mpm/malaysia-e-p/production.

Xuezhi, D. (2020). Remediation methods of crude oil contaminated soil. World Journal of Agricultural Soil Science, 4, 000595. http://doi.org/10.33552/wjass.2020.04.000595.

Fanaei, F.; Moussavi, G.; Shekoohiyan, S. (2020). Enhanced treatment of the oil-contaminated soil using biosurfactant-assisted washing operation combined with H2O2-stimulated biotreatment of the effluent. Journal of Environmental Management, 271, 110941. http://doi.org/10.1016/j.jenvman.2020.110941.

Refugio, X.M. (2016). Microorganisms metabolism during bioremediation of oil contaminated soils. Journal of Bioremediation & Biodegradation, 7, 340. http://doi.org/10.4172/2155-6199.1000340.

Adipah, S. (2018). Introduction of petroleum hydrocarbons contaminants and its human effects. Journal of Environmental Science and Public Health, 3, 43. http://doi.org/10.26502/jesph.96120043.

Elgazali, A.; Althalb, H.; Elmusrati, I.; Ahmed, H.M.; Banat, I.M. (2023). Remediation Approaches to Reduce Hydrocarbon Contamination in Petroleum-Polluted Soil. Microorganisms, 11, 2577. https://doi.org/10.3390/microorganisms11102577.

Sui, X.; Wang, X.; Li, Y.; Ji, H. (2021). Remediation of petroleum-contaminated soils with microbial and microbial combined methods: advances, mechanisms and challenges. Sustainability, 13, 9267. http://doi.org/10.3390/su13169267.

Ra, T.; Zhao, Y.; Zheng, M. (2019). Comparative study on the petroleum crude oil degradation potential of microbes from petroleum-contaminated soil and non-contaminated soil. International Journal of Environmental Science and Technology, 16, 7083–7096. http://doi.org/10.1007/s13762-018-2114-z.

Sakshi; Singh, S.K.; Haritash, A.K. (2019). Polycyclic aromatic hydrocarbons: soil pollution and remediation. International Journal of Environmental Science and Technology, 16, 6393–6413. http://doi.org/10.1007/s13762-019-02414-3.

Daâssi, D.; Qabil Almaghribi, F. (2022). Petroleum-contaminated soil: environmental occurrence and remediation strategies. 3 Biotech, 12, 198. http://doi.org/10.1007/s13205-022-03198-z.

Zahermand, S.; Vafaeian, M.; Bazyar, M.H. (2020). Analysis of the physical and chemical properties of soil contaminated with oil (petroleum) hydrocarbons. Earth Science Research Journal, 24, 138–147. http://doi.org/10.15446/esrj.v24n2.76217.

Stepanova, A.Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. (2022). Bioremediation of soil from petroleum contamination. Processes, 10, 1224. http://doi.org/10.3390/pr10061224.

Salimnezhad, A.; Soltani-Jigheh, H.; Soorki, A.A. (2021). Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 13, 618–627. http://doi.org/10.1016/j.jrmge.2020.11.011.

Hewelke, E.; Szatyłowicz, J.; Hewelke, P.; Gnatowski, T.; Aghalarov, R. (2018). The impact of diesel oil pollution on the hydrophobicity and CO2 efflux of forest soils. Water, Air, & Soil Pollution, 229, 72. http://doi.org/10.1007/s11270-018-3720-6.

Wang, L.; Cheng, Y.; Naidu, R.; Bowman, M. (2021). The key factors for the fate and transport of petroleum hydrocarbons in soil with related in/ex situ measurement methods: an overview. Frontiers in Environmental Science, 9, 756404. http://doi.org/10.3389/fenvs.2021.756404.

Klamerus-Iwan, A.; Błońska, E.; Lasota, J.; Kalandyk, A.; Waligórski, P. (2015). Influence of oil contamination on physical and biological properties of forest soil after chainsaw use. Water, Air, & Soil Pollution, 226, 299. http://doi.org/10.1007/s11270-015-2649-2.

Camenzuli, D.; Freidman, B.L. (2015). On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Polar Research, 34, 24492. http://doi.org/10.3402/polar.v34.24492.

Steliga, T.; Kluk, D. (2020). Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicology and Environmental Safety, 194, 110409. http://doi.org/10.1016/j.ecoenv.2020.110409.

Lorestani, B.; Ghasemi, M.; Cheraghi, M.; Yousefi, N. (2012). Survey the effect of oil pollution on morphological characteristics in Faba Vulgaris and Vicia Ervilia. Journal of Chemical Health Risks, 2, 5–8.

Uzoho, B.; Oti, N.; Onweremadu, E. (2006). Effect of crude oil pollution on maize growth and soil properties in Ihiagwa, Imo State, Nigeria. International Journal of Agriculture and Rural Development, 5, 1–7. http://doi.org/10.4314/ijard.v5i1.2568.

Kuppusamy, S.; Maddela, N.R.; Megharaj, M.; Venkateswarlu, K. (2020). Impact of total petroleum hydrocarbons on human health. In Total Petroleum Hydrocarbons. http://doi.org/10.1007/978-3-030-24035-6_6.

O’Callaghan-Gordo, C.; Orta-Martínez, M.; Kogevinas, M. (2016). Health effects of non-occupational exposure to oil extraction. Environmental Health: A Global Access Science Source, 15, 39. http://doi.org/10.1186/s12940-016-0140-1.

Treatment of petroleum contaminated soils in cold, wet, remote regions. (accessed Oct. 22, 2024) Available online:https://www.fs.usda.gov/t-d/pubs/pdfpubs/pdf02712801/pdf02712801_72dpi.pdf.

Khodadoust, A.P.; Suidan, M.T.; Acheson, C.M.; Brenner, R.C. (1999). Solvent extraction of pentachlorophenol from contaminated soils using water-ethanol mixtures. Chemosphere, 38, 2433–2445. http://doi.org/10.1016/S0045-6535(98)00458-5.

Silva, A.; Delerue-Matos, C.; Fiúza, A. (2005). Use of solvent extraction to remediate soils contaminated with hydrocarbons. Journal of Hazardous Materials, 124, 223–228. http://doi.org/10.1016/j.jhazmat.2005.05.022.

Goi, A.; Kulik, N.; Trapido, M. (2006). Combined chemical and biological treatment of oil contaminated soil. Chemosphere, 63(10). http://doi.org/10.1016/j.chemosphere.2005.09.023.

Kwan, W.P.; Voelker, B.M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology, 37(6). http://doi.org/10.1021/es020874g.

Brejea, R.; Boroș, M.; Roșca, S.; Traian, J.E.; Budău, R.; Borza, I.M.; Păcurar, I. (2023). Bioremediation of Oil Contaminated Soil and Restoration of Land Historically Polluted with Oil Products in the Agricultural Circuit in the Plain and Western Hills, Romania. Applied Sciences, 13, 10245. https://doi.org/10.3390/app131810245.

Giannopoulos, D.; Kolaitis, D.I.; Togkalidou, A.; Skevis, G.; Founti, M.A. (2007). Quantification of emissions from the co-incineration of cutting oil emulsions in cement plants - Part I: NOx, CO and VOC. Fuel, 86(7–8). http://doi.org/10.1016/j.fuel.2006.10.025.

Vidonish, J.E.; Zygourakis, K.; Masiello, C.A.; Sabadell, G.; Alvarez, P.J.J. (2016). Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering, 2(4). http://doi.org/10.1016/J.ENG.2016.04.005.

Das, N.; Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 941810. https://doi.org/10.4061/2011/941810.

Safdari, M.S.; [other authors]; (2018). Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil. Journal of Hazardous Materials, 342, 270–278. http://doi.org/10.1016/j.jhazmat.2017.08.044.

Chaîneau, C.H.; Rougeux, G.; Yéprémian, C.; Oudot, J. (2005). Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biology and Biochemistry, 37(8), 1490–1497. http://doi.org/10.1016/j.soilbio.2005.01.012.

Pino, N.J.; Muñera, L.M.; Peñuela, G.A. (2016). Bioaugmentation with immobilized microorganisms to enhance phytoremediation of PCB-contaminated soil. Soil, Sediment and Contamination, 25(4), 419–430. http://doi.org/10.1080/15320383.2016.1148010.

Das, M.; Adholeya, A. (2012). Role of microorganisms in remediation of contaminated soil. In Microorganisms in Environmental Management: Microbes and Environment; Satyanarayana, T., Johri, B., Eds.; Springer: Dordrecht. http://doi.org/10.1007/978-94-007-2229-3_4.

Zou, C.; Wang, M.; Xing, Y.; Lan, G.; Ge, T.; Yan, X.; Gu, T. (2014). Characterization and optimization of biosurfactants produced by Acinetobacter baylyi ZJ2 isolated from crude oil-contaminated soil sample toward microbial enhanced oil recovery applications. Biochemical Engineering Journal, 90, 49–58. http://doi.org/10.1016/j.bej.2014.05.007.

Wijekoon, W.; Priyashantha, H.; Gajanayake, P.; Manage, P.; Liyanage, C.; Jayarathna, S.; Kumarasinghe, U. (2025). Review and Prospects of Phytoremediation: Harnessing Biofuel-Producing Plants for Environmental Remediation. Sustainability, 17, 822. https://doi.org/10.3390/su17030822.

Adedeji, J.A.; Tetteh, E.K.; Opoku Amankwa, M.; Asante-Sackey, D.; Ofori-Frimpong, S.; Armah, E.K.; Rathilal, S.; Mohammadi, A.H.; Chetty, M. (2022). Microbial Bioremediation and Biodegradation of Petroleum Products—A Mini Review. Applied Sciences, 12, 12212. https://doi.org/10.3390/app122312212.

Guarino, C.; Spada, V.; Sciarrillo, R. (2017). Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioaugmentation – Assisted Landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere, 170. http://doi.org/10.1016/j.chemosphere.2016.11.165.

Corredor, D.; Duchicela, J.; Flores, F.J.; Maya, M.; Guerron, E. (2024). Review of Explosive Contamination and Bioremediation: Insights from Microbial and Bio-Omic Approaches. Toxics, 12, 249. https://doi.org/10.3390/toxics12040249.

Ite, A.E.; Semple, K.T. (2012). Biodegradation of petroleum hydrocarbons in contaminated soil. In Microbial Biotechnology for Energy and Environment, pp. 250–278. http://doi.org/10.1079/9781845939564.0250.

Dell’ Anno, F.; Rastelli, E.; Sansone, C.; Brunet, C.; Ianora, A.; Dell’ Anno, A. Bacteria, (2021). Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era. Microorganisms, 9, 1695. https://doi.org/10.3390/microorganisms9081695.

Pszczółkowski, P.; Sawicka, B.; Barbaś, P.; Skiba, D.; Krochmal-Marczak, B. (2023). The Use of Effective Microorganisms as a Sustainable Alternative to Improve the Quality of Potatoes in Food Processing. Applied Sciences, 13, 7062. https://doi.org/10.3390/app13127062.

Kiamarsi, Z.; Kafi, M.; Soleimani, M.; Nezami, A.; Lutts, S. (2020). Conjunction of Vetiveria zizanioides L. and oil-degrading bacteria as a promising technique for remediation of crude oil-contaminated soils. Journal of Cleaner Production, 253. http://doi.org/10.1016/j.jclepro.2019.119719.

Wojtowicz, K.; Steliga, T.; Kapusta, P. (2023). Evaluation of the Effectiveness of Bioaugmentation-Assisted Phytoremediation of Soils Contaminated with Petroleum Hydrocarbons Using Echinacea purpurea. Applied Sciences, 13, 13077. https://doi.org/10.3390/app132413077.

Ali, M.H.; Khan, M.I.; Naveed, M.; Tanvir, M.A. (2023). Microbe-Assisted Rhizoremediation of Hydrocarbons and Growth Promotion of Chickpea Plants in Petroleum Hydrocarbons-Contaminated Soil. Sustainability, 15, 6081. https://doi.org/10.3390/su15076081.

Bento, F.M.; Camargo, F.A.O.; Okeke, B.C.; Frankenberger, W.T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology, 96(9), 1049–1055. http://doi.org/10.1016/j.biortech.2004.09.008.

Sharma, A.; Kumar, P.; Rehman, M.B. (2014). Biodegradation of diesel hydrocarbon in soil by bioaugmentation of Pseudomonas aeruginosa: A laboratory scale study. International Journal of Environmental Bioremediation & Biodegradation, 2(4), 202–212.

Lee, K.C.; Darah, I.; Ibrahim, C.O. (2011). A laboratory scale bioremediation of Tapis crude oil contaminated soil by bioaugmentation of Acinetobacter baumannii T30C. African Journal of Microbiology Research, 5(18), 2609–2615. http://doi.org/10.5897/ajmr11.185.

Sayed, K.; Baloo, L.; Sharma, N.K. (2021). Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. International Journal of Environmental Research and Public Health, 18, 2226. https://doi.org/10.3390/ijerph18052226.

Vasudevan, N.; Rajaram, P. (2001). Bioremediation of oil sludge-contaminated soil. Environment International, 26(5–6), 409–411. http://doi.org/10.1016/S0160-4120(01)00020-4.

Biktasheva, L.; Gordeev, A.; Usova, A.; Kirichenko, A.; Kuryntseva, P.; Selivanovskaya, S. (2024). Bioremediation of Oil-Contaminated Soils Using Biosurfactants Produced by Bacteria of the Genus Nocardiopsis sp. Microbiology Research, 15, 2575–2592. https://doi.org/10.3390/microbiolres15040171.

Myazin, V.A.; Korneykova, M.V.; Chaporgina, A.A.; Fokina, N.V.; Vasilyeva, G.K. (2021). The Effectiveness of Biostimulation, Bioaugmentation and Sorption-Biological Treatment of Soil Contaminated with Petroleum Products in the Russian Subarctic. Microorganisms, 9, 1722. https://doi.org/10.3390/microorganisms9081722.

Udume, O.A.; Abu, G.O.; Stanley, H.O.; Vincent-Akpu, I.F.; Momoh, Y.; Eze, M.O. (2023). Biostimulation of Petroleum-Contaminated Soil Using Organic and Inorganic Amendments. Plants, 12, 431. https://doi.org/10.3390/plants12030431.

Gkorezis, P.; Daghio, M.; Franzetti, A.; Van Hamme, J.D.; Sillen, W.; Vangronsveld, J. (2016). The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective. Frontiers in Microbiology, 7, 1836. http://doi.org/10.3389/fmicb.2016.01836.

Yavari, S.; Malakahmad, A.; Sapari, N.B. (2015). A review on phytoremediation of crude oil spills. Water, Air, and Soil Pollution, 226(8), 279. http://doi.org/10.1007/s11270-015-2550-z.

Shahi, A.; Aydin, S.; Ince, B.; Ince, O. (2016). Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicology and Environmental Safety, 125, 153–160. http://doi.org/10.1016/j.ecoenv.2015.11.029.

Omokhagbor Adams, G.; Tawari Fufeyin, P.; Eruke Okoro, S.; Ehinomen, I. (2020). Bioremediation, biostimulation and bioaugmentation: A review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28–39. http://doi.org/10.12691/ijebb-3-1-5.

Panchenko, L.; Muratova, A.; Dubrovskaya, E.; Golubev, S.; Turkovskaya, O. (2023). Natural and Technical Phytoremediation of Oil-Contaminated Soil. Life, 13, 177. https://doi.org/10.3390/life13010177.

Andreolli, M.; Lampis, S.; Brignoli, P.; Vallini, G. (2015). Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: A comparative study. Journal of Environmental Management, 153, 121–131. http://doi.org/10.1016/j.jenvman.2015.02.007.

Nwankwegu, A.S.; Orji, M.U.; Onwosi, C.O. (2016). Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil. Chemosphere, 162, 148–156. http://doi.org/10.1016/j.chemosphere.2016.07.074.

Abioye, O.P.; Agamuthu, P.; Abdul Aziz, A.R. (2012). Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments. Biotechnology Research International, 2012, 587041. http://doi.org/10.1155/2012/587041.

Hamzah, A.; Phan, C.W.; Yong, P.H.; Mohd Ridzuan, N.H. (2014). Oil Palm Empty Fruit Bunch and Sugarcane Bagasse Enhance the Bioremediation of Soil Artificially Polluted by Crude Oil. Soil Sediment Contamination, 23, 751–762. http://doi.org/10.1080/15320383.2014.870528.

Rahmati, F.; Asgari Lajayer, B.; Shadfar, N.; van Bodegom, P.M.; van Hullebusch, E.D. (2022). A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms, 10, 1289. https://doi.org/10.3390/microorganisms10071289.

Agamuthu, P.; Dadrasnia, A. (2013). Potential of biowastes to remediate diesel fuel contaminated soil. Global Nest Journal, 15, 474–484. http://doi.org/10.30955/gnj.001031.

Castro Rodríguez, D.J.; Gutiérrez Benítez, O.; Casals Pérez, E.; Demichela, M.; Godio, A.; Chiampo, F. (2022). Bioremediation of Hydrocarbon-Polluted Soil: Evaluation of Different Operative Parameters. Applied Sciences, 12, 2012. https://doi.org/10.3390/app12042012.

Shahsavari, E.; Rouch, D.; Khudur, L.S.; Thomas, D.; Aburto-Medina, A.; Ball, A.S. (2021) Challenges and Current Status of the Biological Treatment of PFAS-Contaminated Soils. Frontiers in Bioengineering and Biotechnology, 8, 602040. https://doi.org/10.3389/fbioe.2020.602040.

Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology and Innovation, 17, 100526. http://doi.org/10.1016/j.eti.2019.100526.

Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944–968. http://doi.org/10.1016/j.chemosphere.2016.10.115.

Sui, X.; Wang, X.; Li, Y.; Ji, H. (2021). Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms, and Challenges. Sustainability, 13, 9267. https://doi.org/10.3390/su13169267.

Sher, S.; Waseem, M.; Leta, M.K. (2023). Review of Techniques for the Removal of Polycyclic Aromatic Hydrocarbons from Produced Water. Environments, 10, 40. https://doi.org/10.3390/environments10030040.

Sumathi, K.; Manian, R. (2023). Bioremediation of polycyclic aromatic hydrocarbons contaminated soils: recent progress, perspectives and challenges. Environmental Monitoring and Assessment, 195(12), 1141. http://doi.org/10.1007/s10661-023-12042-7.

About this article

SUBMITTED: 08 May 2025
ACCEPTED: 10 June 2025
PUBLISHED: 13 June 2025
SUBMITTED to ACCEPTED: 34 days
DOI: https://doi.org/10.53623/tasp.v5i1.683

Cite this article
Nordin, A. R. R. ., Navarro, A. R. ., Reyes, J. C. ., Maragathavalli, S. ., Kristanti, R. A. ., Wulandari, R. ., & Bunrith, S. . (2025). Microbial Bioremediation of Petroleum-Contaminated Soil: A Sustainable Approach. Tropical Aquatic and Soil Pollution, 5(1), 71–87. https://doi.org/10.53623/tasp.v5i1.683
Keywords
Accessed
139
Citations
0
Share this article