Modified membranes have gained significant attention due to their ability to enhance performance. Although membranes modified with TiO₂ nanoparticles have been studied, no research has specifically addressed their effectiveness in removing paracetamol contaminants, despite the widespread use of paracetamol and its potential contribution to increased waste production. Therefore, in this study, polyvinylidene fluoride (PVDF) membranes were modified with TiO₂ nanoparticles, providing new insights into the use of PVDF-TiO₂ specifically for paracetamol wastewater treatment. The results showed that TiO₂ nanoparticle-modified membranes exhibited better performance than unmodified membranes. The unmodified membrane had a lower performance rate (69.18%) compared to membranes modified with titanium isopropoxide (TTIP) at concentrations of 1 M (93.35%) and 0.5 M (90.05%). These results were supported by Scanning Electron Microscopy (SEM) analysis, which revealed that the unmodified membrane had an average pore size of 0.998 μm, whereas the membranes modified with TTIP at 1 M and 0.5 M had average pore sizes of 0.615 μm and 0.791 μm, respectively. The larger pores in the unmodified membrane allowed larger particles to pass through, reducing its filtration efficiency. These findings underscore the potential of TiO₂ nanoparticle-modified membranes for significantly enhancing water purification processes, particularly in the removal of pharmaceutical contaminants like paracetamol. Ultimately, this research could contribute to the development of more effective strategies for managing pharmaceutical waste in water sources, leading to improved environmental protection and public health.
Horner, R. (2016). Pharmaceuticals and the Global South: A Healthy Challenge for Development Theory? Geography Compass, 10, 363-77. https://doi.org/10.1111/gec3.12277.
Khalidi-idrissi, A.; Madinzi, A.; Anouzla, A.; Pala, A.; Mouhir, L.; Kadmi, Y.; Souabi, S. (2023). Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. International Journal of Environmental Science and Technology, 20, 11719-40. https://doi.org/10.1007/s13762-023-04867-z.
Ratnasari, A. (2023). Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism-A review. Bioengineered, 14, 2252234. https://doi.org/10.1080/21655979.2023.2252234.
Waleng, N.J.; Nomngongo, P.N. (2022). Occurrence of pharmaceuticals in the environmental waters: African and Asian perspectives. Environmental Chemistry and Ecotoxicology, 4, 50-66. https://doi.org/10.1016/j.enceco.2021.11.002.
Leitão, I.; Martins, L.L.; Carvalho, L.; Oliveira, M.C.; Marques, M.M.; Mourato, M.P. (2021). Acetaminophen Induces an Antioxidative Response in Lettuce Plants. Plants, 10, 1152. https://doi.org/10.3390/plants10061152.
Dewanti, A.; Kunjirika, T.; Putri, R.R.; Adaninggar, A.; Raharjeng, A.; Retnoaji, B.; Nuriliani, A.; Sofyantoro, F.; Septriani, N.I.; Saragih, H. (2023). Effects of Paracetamol on the Development of Zebrafish (Danio rerio). Pertanika Journal of Tropical Agricultural Science, 46. https://doi.org/10.47836/pjtas.46.4.06.
Yisa, A.G.; Chia, M.A.; Gadzama, I.M.K.; Oniye, S.J.; Sha’aba, R.I.; Gauje, B. (2023). Immobilization, oxidative stress and antioxidant response of Daphnia magna to Amoxicillin and Ciprofloxacin. Environmental Toxicology and Pharmacology, 98, 104078. https://doi.org/10.1016/j.etap.2023.104078.
Farmen, E.; Olsvik, P.A.; Berntssen, M.H.G.; Hylland, K.; Tollefsen, K.E. (2010). Oxidative stress responses in rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to pro-oxidants and a complex environmental sample. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151, 431-38. https://doi.org/10.1016/j.cbpc.2010.01.008.
Zhang, Z.; Liu, Y.; Zhao, B.; Li, J.; Wang, L.; Ma, C. (2020). Reduction of long-term irreversible membrane fouling: A comparison of integrated and separated processes of MIEX and UF. Journal of Membrane Science, 616, 118567. https://doi.org/10.1016/j.memsci.2020.118567.
Ma, C.; Wang, M.; Wang, Z.; Gao, M.; Wang, J. (2020). Recent progress on thin film composite membranes for CO2 separation. Journal of CO2 Utilization, 42, 101296. https://doi.org/10.1016/j.jcou.2020.101296.
Shehata, N.; Egirani, D.; Olabi, A.G.; Inayat, A.; Abdelkareem, M.A.; Chae, K.-J.; Sayed, E.T. (2023). Membrane-based water and wastewater treatment technologies: Issues, current trends, challenges, and role in achieving sustainable development goals, and circular economy. Chemosphere, 320, 137993. https://doi.org/10.1016/j.chemosphere.2023.137993.
Zuo, K.; Wang, K.; DuChanois, R.M.; Fang, Q.; Deemer, E.M.; Huang, X.; Xin, R.; Said, I.A.; He, Z.; Feng, Y.; Shane Walker, W.; Lou, J.; Elimelech, M.; Huang, X.; Li, Q. (2021). Selective membranes in water and wastewater treatment: Role of advanced materials. Materials Today, 50, 516-32. https://doi.org/10.1016/j.mattod.2021.06.013.
Obotey Ezugbe, E.; Rathilal, S. (2020). Membrane Technologies in Wastewater Treatment: A Review. Membranes, 10, 89. https://doi.org/10.3390/membranes10050089.
Adewole, J.K.; Al Maawali, H.M.; Jafary, T.; Firouzi, A.; Oladipo, H. (2022). A review of seawater desalination with membrane distillation: material development and energy requirements. Water Supply, 22, 8500-26. https://doi.org/10.2166/ws.2022.337.
Yahia, E.H.; Cherif, E.K.; Ouzzine, M.; Touijer, A.; Coren, F.; Saidi, M. (2023). Promising Porous Carbon Material Derived from Argan Paste Cake by KOH Activation, for Paracetamol Removal. Processes, 11, 2078. https://doi.org/10.3390/pr11072078.
Wang, L.; Bian, Z. (2020). Photocatalytic degradation of paracetamol on Pd–BiVO4 under visible light irradiation. Chemosphere, 239, 124815. https://doi.org/10.1016/j.chemosphere.2019.124815.
Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.J.; Wilhelm, A.M.; Delmas, H. (2012). Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons. Journal of Hazardous Materials, 221-222, 131-38. https://doi.org/10.1016/j.jhazmat.2012.04.021.
Liu, Y.; Liu, H.; Shen, Z. (2021). Nanocellulose Based Filtration Membrane in Industrial Waste Water Treatment: A Review. Materials (Basel), 14. https://doi.org/10.3390/ma14185398.
Sapna; Sharma, R.; Kumar, D. (2019). Chapter 29 - Chitosan-Based Membranes for Wastewater Desalination and Heavy Metal Detoxification. In Nanoscale Materials in Water Purification; Thomas, S., Pasquini, D., Leu, S.-Y., Gopakumar, D.A. (eds.); Elsevier: 799-814. https://doi.org/10.1016/B978-0-12-813926-4.00037-9.
Liu, T.; Chen, D.; Cao, Y.; Yang, F.; Chen, J.; Kang, J.; Xu, R.; Xiang, M. (2021). Construction of a composite microporous polyethylene membrane with enhanced fouling resistance for water treatment. Journal of Membrane Science, 618, 118679. https://doi.org/10.1016/j.memsci.2020.118679.
Sumisha, A.; Arthanareeswaran, G.; Lukka Thuyavan, Y.; Ismail, A.F.; Chakraborty, S. (2015). Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes. Ecotoxicology and Environmental Safety, 121, 174-79. https://doi.org/10.1016/j.ecoenv.2015.04.004.
Rawindran, H.; Arif bin Hut, N.; Vrasna, D.K.; Goh, P.S.; Lim, J.W.; Liew, C.S.; Ho, C.-D.; Kang, H.-S.; Shahid, M.K.; Ng, H.-S.; Habila, M.A.; Khoo, K.S. (2024). Ultrafiltration membrane fabricated from polyethylene terephthalate plastic waste for treating microalgal wastewater and reusing for microalgal cultivation. Chemosphere, 346, 140591. https://doi.org/10.1016/j.chemosphere.2023.140591.
Gryta, M. (2021). Application of polypropylene membranes hydrophilized by plasma for water desalination by membrane distillation. Desalination, 515, 115187. https://doi.org/10.1016/j.desal.2021.115187.
Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. (2021). Recent development in modification of polysulfone membrane for water treatment application. Journal of Water Process Engineering, 40, 101835. https://doi.org/10.1016/j.jwpe.2020.101835.
Liu, W.; Lin, H.; Wang, J.; Han, Q.; Liu, F. (2021). Polytetrafluoroethylene (PTFE) hollow fibers modified by hydrophilic crosslinking network (HCN) for robust resistance to fouling and harsh chemical cleaning. Journal of Membrane Science, 630, 119301. https://doi.org/10.1016/j.memsci.2021.119301.
Mariën, H.; Verbeke, R.; Vankelecom, I.F.J. (2021). Nanofiltration Membrane Materials and Preparation. In Nanofiltration: 35-94.
Sutrisna, P.D.; Mustika, P.C.B.W.; Hadi, R.P.; Caren; Gani, Y.E. (2023). Improved oily wastewater rejection and flux of hydrophobic PVDF membrane after polydopamine-polyethyleneimine co-deposition and modification. South African Journal of Chemical Engineering, 44, 42-50. https://doi.org/10.1016/j.sajce.2023.01.006.
Wang, F.J.; Li, C.Q.; Tan, Z.S.; Li, W.; Ou, J.F.; Xue, M.S. (2013). PVDF surfaces with stable superhydrophobicity. Surface and Coatings Technology, 222, 55-61. https://doi.org/10.1016/j.surfcoat.2013.02.004.
Ike, I.A.; Zhang, J.; Groth, A.; Orbell, J.D.; Duke, M. (2017). Effects of dissolution conditions on the properties of PVDF ultrafiltration membranes. Ultrasonics Sonochemistry, 39, 716-26. https://doi.org/10.1016/j.ultsonch.2017.05.041.
Balli, B.; Şavk, A.; Şen, F. (2019). Graphene and polymer composites for supercapacitor applications. In Nanocarbon and its Composites; Khan, A., Jawaid, M., Inamuddin, Asiri, A.M. (eds.); Woodhead Publishing: 123-51.
Zhao, Q.; Xie, R.; Luo, F.; Faraj, Y.; Liu, Z.; Ju, X.-J.; Wang, W.; Chu, L.-Y. (2018). Preparation of high strength poly(vinylidene fluoride) porous membranes with cellular structure via vapor-induced phase separation. Journal of Membrane Science, 549, 151-64. https://doi.org/10.1016/j.memsci.2017.10.068.
Jee, K.Y.; Shin, D.H.; Lee, Y.T. (2016). Surface modification of polyamide RO membrane for improved fouling resistance. Desalination, 394, 131-137. https://doi.org/10.1016/j.desal.2016.05.013.
Hamzah, N.; Leo, C.P.; Ooi, B.S. (2019). Effect of polymer loading on superhydrophobic PVDF-TiO2 supported membrane for membrane distillation. AIP Conference Proceedings, 2124. https://doi.org/10.1063/1.5117127.
Chen, S.; Zhou, J.; Li, K.; Chen, Z.; Li, X.; Su, X.; Ao, X.; Xie, H.; Chen, L.; Wu, X.; Wu, W. (2023). Superhydrophobic and robust photothermal/electrothermal PVDF-a/CNT-s@PDMS membrane for crude oil removal and dye adsorption. Composites Science and Technology, 244, 110267. https://doi.org/10.1016/j.compscitech.2023.110267.
Jiang, G.; Liu, Z.; Hu, J. (2022). Superhydrophobic and Photothermal PVDF/CNTs Durable Composite Coatings for Passive Anti-Icing/Active De-Icing. Advanced Materials Interfaces, 9, 2101704. https://doi.org/10.1002/admi.202101704.
Liu, Z.; Wang, H.; Zhang, X.; Lv, C.; Zhao, Z.; Wang, C. (2017). Durable and self-healing superhydrophobic polyvinylidene fluoride (PVDF) composite coating with in-situ gas compensation function. Surface and Coatings Technology, 327, 18-24. https://doi.org/10.1016/j.surfcoat.2017.08.003.
Wen, M.; Chen, M.; Chen, K.; Li, P.-L.; Lv, C.; Zhang, X.; Yao, Y.; Yang, W.; Huang, G.; Ren, G.-K.; Deng, S.-J.; Liu, Y.-K.; Zheng, Z.; Xu, C.-G.; Luo, D.-L. (2021). Superhydrophobic composite graphene oxide membrane coated with fluorinated silica nanoparticles for hydrogen isotopic water separation in membrane distillation. Journal of Membrane Science, 626, 119136. https://doi.org/10.1016/j.memsci.2021.119136.
Liu, S.; Ulugun, B.; DeFlorio, W.; Arcot, Y.; Yegin, Y.; Salazar, K.S.; Castillo, A.; Taylor, T.M.; Cisneros-Zevallos, L.; Akbulut, M. (2021). Development of durable and superhydrophobic nanodiamond coating on aluminum surfaces for improved hygiene of food contact surfaces. Journal of Food Engineering, 298, 110487. https://doi.org/10.1016/j.jfoodeng.2021.110487.
Tan, X.; Huang, Z.; Jiang, L.; Xiao, T.; Wang, Y.; Yang, X.; Zhu, H.; Li, S.; Chen, X. (2021). A simple fabrication of superhydrophobic PVDF/SiO2 coatings and their anti-icing properties. Journal of Materials Research, 36, 637-645. https://doi.org/10.1557/s43578-020-00034-z.
Liu, Z.; Wang, H.; Zhang, X.; Lv, C.; Zhao, Z.; Wang, C. (2017). Durable and self-healing superhydrophobic polyvinylidene fluoride (PVDF) composite coating with in-situ gas compensation function. Surface and Coatings Technology, 327, 18-24. https://doi.org/10.1016/j.surfcoat.2017.08.003.
Ratnasari, A. (2023). Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism-A review. Bioengineered, 14, 2252234. https://doi.org/10.1080/21655979.2023.2252234.
Fadlilah, D.R.; Endarko, E.; Ratnasari, A.; Hozairi, H.; Yusop, Z.; Syafiuddin, A. (2020). Enhancement of antibacterial properties of various polymers functionalized with silver nanoparticles. Biointerface Research in Applied Chemistry, 10, 5592-5598. https://doi.org/10.33263/BRIAC0103.592598.
Qing, Y.; Yang, C.; Yu, N.; Shang, Y.; Sun, Y.; Wang, L.; Liu, C. (2016). Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance. Chemical Engineering Journal, 290, 37-44. https://doi.org/10.1016/j.cej.2016.01.013.
Dong, S.; Yun, Y.; Wang, M.; Li, C.; Fu, H.; Li, X.; Yang, W.; Liu, G. (2020). Superhydrophobic alumina hollow ceramic membrane modified by TiO2 nanorod array for vacuum membrane distillation. Journal of the Taiwan Institute of Chemical Engineers, 117, 56-62. https://doi.org/10.1016/j.jtice.2020.11.030.
Velayi, E.; Norouzbeigi, R. (2020). A mesh membrane coated with dual-scale superhydrophobic nano zinc oxide: Efficient oil-water separation. Surface and Coatings Technology, 385, 125394. https://doi.org/10.1016/j.surfcoat.2020.125394.
Bai, L.; Wang, X.; Guo, X.; Liu, F.; Sun, H.; Wang, H.; Li, J. (2023). Superhydrophobic electrospun carbon nanofiber membrane decorated by surfactant-assisted in-situ growth of ZnO for oil–water separation. Applied Surface Science, 622, 156938. https://doi.org/10.1016/j.apsusc.2023.156938.
Choi, H.; Stathatos, E.; Dionysiou, D.D. (2006). Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B: Environmental, 63, 60-67. https://doi.org/10.1016/j.apcatb.2005.09.012.
Hoseini, S.N.; Pirzaman, A.K.; Aroon, M.A.; Pirbazari, A.E. (2017). Photocatalytic degradation of 2,4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes. Journal of Water Process Engineering, 17, 124-134. https://doi.org/10.1016/j.jwpe.2017.02.015.
Tibi, F.; Park, S.-J.; Kim, J. (2021). Improvement of Membrane Distillation Using PVDF Membrane Incorporated with TiO2 Modified by Silane and Optimization of Fabricating Conditions. Membranes, 11, 95. https://doi.org/10.3390/membranes11020095.
Qing, W.; Wang, J.; Ma, X.; Yao, Z.; Feng, Y.; Shi, X.; Liu, F.; Wang, P.; Tang, C.Y. (2019). One-step tailoring surface roughness and surface chemistry to prepare superhydrophobic polyvinylidene fluoride (PVDF) membranes for enhanced membrane distillation performances. Journal of Colloid and Interface Science, 553, 99-107. https://doi.org/10.1016/j.jcis.2019.06.011.
Madaeni, S.S.; Zinadini, S.; Vatanpour, V. (2011). A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. Journal of Membrane Science, 380, 155-162. https://doi.org/10.1016/j.memsci.2011.07.006.
Fuzil, N.S.; Othman, N.H.; Alias, N.H.; Marpani, F.; Mat Shayuti, M.S.; Shahruddin, M.Z.; Mohd Razlan, M.R.; Abd Rahman, N.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F.; Kusworo, T.D.; Ul-Hamid, A. (2023). MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation. Journal of Environmental Chemical Engineering, 11, 109866. https://doi.org/10.1016/j.jece.2023.109866.
Du, C.; Wang, Z.; Liu, G.; Wang, W.; Yu, D. (2021). One-step electrospinning PVDF/PVP- TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126790. https://doi.org/10.1016/j.colsurfa.2021.126790.
Sakarkar, S.; Muthukumaran, S.; Jegatheesan, V. (2020). Evaluation of polyvinyl alcohol (PVA) loading in the PVA/titanium dioxide (TiO2) thin film coating on polyvinylidene fluoride (PVDF) membrane for the removal of textile dyes. Chemosphere, 257, 127144. https://doi.org/10.1016/j.chemosphere.2020.127144.
Pramono, E.; Sejati, G.; Wahyuningsih, S.; Purnawan, C. (2023). Polyvinylidene Fluoride (PVDF)/Modified Clay Hybrid Membrane for Humic Acid and Methylene Blue Filtration. Indonesian Journal of Chemistry, 23, 425. https://doi.org/10.22146/ijc.78979.
Razmjou, A.; Mansouri, J.; Chen, V.; Lim, M.; Amal, R. (2011). Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. Journal of Membrane Science, 380, 98-113. https://doi.org/10.1016/j.memsci.2011.06.035.
Razmjou, A.; Arifin, E.; Dong, G.; Mansouri, J.; Chen, V. (2012). Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. Journal of Membrane Science, 415-416, 850-863. https://doi.org/10.1016/j.memsci.2012.06.004.
Orooji, Y.; Ghasali, E.; Emami, N.; Noorisafa, F.; Razmjou, A. (2019). ANOVA Design for the Optimization of TiO2 Coating on Polyether Sulfone Membranes. Molecules, 24, 2924.
Ye, L.; Yang, C.; Tian, L.; Zan, L.; Peng, T. (2011). Tunable photocatalytic selectivity of fluoropolymer PVDF modified TiO2. Applied Surface Science, 257, 8072-8077. https://doi.org/10.1016/j.apsusc.2011.04.101.
Gayatri, R.; Fizal, A.N.S.; Yuliwati, E.; Hossain, M.S.; Jaafar, J.; Zulkifli, M.; Taweepreda, W.; Ahmad Yahaya, A.N. (2023). Preparation and Characterization of PVDF- TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection. Nanomaterials, 13. https://doi.org/10.3390/nano13061023.
Liu, W.; Guo, Y.; Xue, Z.; Sun, H.; Lin, X.; Liu, C. (2024). Fabrication of PVDF membranes via γ-ray irradiation and investigation into their membrane formation mechanisms and water treatment properties. Chemical Engineering Journal, 494, 152975. https://doi.org/10.1016/j.cej.2024.152975.
Ahmad, J.; Deshmukh, K.; Habib, M.; Hägg, M.-B. (2014). Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/ TiO2 Nanocomposite Membranes. Arabian Journal for Science and Engineering, 39. https://doi.org/10.1007/s13369-014-1287-0.
SUBMITTED: 14 January 2025
ACCEPTED: 04 February 2025
PUBLISHED:
14 February 2025
SUBMITTED to ACCEPTED: 21 days
DOI:
https://doi.org/10.53623/tasp.v5i1.586