Environmental contamination from sunscreen ingredients such as oxybenzone and octinoxate has become an increasing concern due to their persistence and toxicity, even at trace concentrations. Continuous sunscreen usage leads to the constant release of these pollutants into the environment, where they can bioaccumulate and resist degradation. The novelty of this review lies in its focused synthesis of recent studies on the microbial and enzymatic degradation mechanisms of sunscreen contaminants, particularly oxybenzone and octinoxate, which exhibit high persistence and bioaccumulative potential. Microbial degradation offers a promising biological approach for the breakdown of these organic pollutants, as microorganisms have demonstrated strong biodegradative capabilities toward various environmental contaminants. This process relies on microbial enzymes that transform or mineralize pollutants into less toxic and simpler compounds. Key enzymes involved include laccase, cytochrome P450, and monooxygenase, which catalyze oxidation, reduction, and hydroxylation reactions. The article further examines these organic pollutants in terms of their persistence, environmental occurrence, degradation mechanisms, and pathways, while also addressing their ecological and health impacts. Moreover, different microbial-based treatment technologies are evaluated, highlighting their respective strengths and limitations. Finally, the review emphasizes the need for continued research into organic pollutant behavior and bioremediation technologies to deepen understanding and mitigate the adverse effects of these contaminants on the environment.
Valentová, K. (2023). Biotransformation of Natural Products and Phytochemicals: Metabolites, Their Preparation, and Properties. International Journal of Molecular Sciences, 24(9), 8030. https://doi.org/10.3390/ijms24098030.
Maddaleno, A.S.; Guardia-Escote, L.; Vinardell, M.P.; Teixidó, E.; Mitjans, M. (2025). Assessment of Endocrine-Disrupting Properties in Cosmetic Ingredients: Focus on UV Filters and Alternative Testing Methods. Cosmetics, 12(4), 175. https://doi.org/10.3390/cosmetics12040175.
Santander Ballestín, S.; Luesma Bartolomé, M.J. (2023). Toxicity of Different Chemical Components in Sun Cream Filters and Their Impact on Human Health: A Review. Applied Sciences, 13(2), 712. https://doi.org/10.3390/app13020712.
Pniewska, A.; Kalinowska-Lis, U. (2024). A Survey of UV Filters Used in Sunscreen Cosmetics. Applied Sciences, 14(8), 3302. https://doi.org/10.3390/app14083302.
Breakell, T.; Kowalski, I.; Foerster, Y.; Kramer, R.; Erdmann, M.; Berking, C.; Heppt, M.V. (2024). Ultraviolet Filters: Dissecting Current Facts and Myths. Journal of Clinical Medicine, 13(10), 2986. https://doi.org/10.3390/jcm13102986.
Khobragade, R.; Chaudhary, A.A.; Ali, M.A.M.; Kale, M.; Raut, N.; Ghive, P.; Rudayni, H.A.; Nagpurkar, K.; Umekar, M.; Trivedi, R. (2025). Nanotechnology-Enhanced Sunscreens: Balancing Efficacy, Safety, and Environmental Impact. Pharmaceutics, 17(8), 1080. https://doi.org/10.3390/pharmaceutics17081080.
Mustieles, V.; Balogh, R. K.; Axelstad, M.; Montazeri, P.; Márquez, S.; Vrijheid, M.; Draskau, M. K.; Taxvig, C.; Peinado, F. M.; Berman, T.; Frederiksen, H.; Fernández, M. F.; Marie Vinggaard, A.; Andersson, A. (2023). Benzophenone-3: Comprehensive review of the toxicological and human evidence with meta-analysis of human biomonitoring studies. Environment International, 173, 107739. https://doi.org/10.1016/j.envint.2023.107739.
Kryczyk-Poprawa, A.; Sánchez-Hidalgo, A.; Baran, W.; Adamek, E.; Sułkowska-Ziaja, K.; Kała, K.; Muszyńska, B.; Opoka, W. (2025). The Toxicological Impact of the Ultraviolet Filter Oxybenzone on Antioxidant Profiles in In Vitro Cultures of Lentinula edodes. Toxics, 13(3), 145. https://doi.org/10.3390/toxics13030145.
Görig, T.; Schneider, S.; Seuffert, S.; Greinert, R.; Diehl, K. (2020). Does sunscreen use comply with official recommendations? Results of a nationwide survey in Germany. Journal of the European Academy of Dermatology and Venereology, 34(5), 1112–1117. https://doi.org/10.1111/jdv.16100.
Hafez, S. Y.; Alraddadi, E. A.; Ramadan, M.; Alsalamah, F.; Alghumuy, R.; Aljuhani, F. F. (2024). Assessment of prevalence of sunscreen use and related practices among people living in Saudi Arabia: A cross-sectional survey-based study. Journal of Cosmetic Dermatology, 23(5), 1718–1725. https://doi.org/10.1111/jocd.16191.
Jesus, A.; Sousa, E.; Cruz, M.T.; Cidade, H.; Lobo, J.M.S.; Almeida, I.F. (2022). UV Filters: Challenges and Prospects. Pharmaceuticals, 15(3), 263. https://doi.org/10.3390/ph15030263.
Notardonato, I.; Avino, P. (2024). Dispersive Liquid–Liquid Micro Extraction: An Analytical Technique Undergoing Continuous Evolution and Development—A Review of the Last 5 Years. Separations, 11(7), 203. https://doi.org/10.3390/separations11070203.
Stec, M.; Astel, A. M. (2023). Distribution of Nine Organic UV Filters along the Shore Next to the Harbor Canals in the Middle Pomeranian Region (Northern Poland). Water, 15(13), 2403. https://doi.org/10.3390/w15132403.
Yang, F.; Yuan, T.; Ao, J.; Gao, L.; Shen, Z.; Zhou, J.; Wang, B.; Pan, X. (2024). Human exposure risk of organic UV filters: A comprehensive analysis based on primary exposure pathways. Ecotoxicology and Environmental Safety, 283, 116800. https://doi.org/10.1016/j.ecoenv.2024.116800.
DiNardo, J. C.; Downs, C. A. (2018). Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone-3. Journal of Cosmetic Dermatology, 17(1), 15–19. https://doi.org/10.1111/jocd.12449.
Cabeza, Y.; Candela, L.; Ronen, D.; Teijon, G. (2012). Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). Journal of Hazardous Materials, 239–240, 32–39. https://doi.org/10.1016/j.jhazmat.2012.07.032.
González, M.P.; Vilas, A.; Beiras, R. (2022). Ecotoxicological Evaluation of Sunscreens on Marine Plankton. Cosmetics, 9, 20. https://doi.org/10.3390/cosmetics9010020.
Gavrila, A.A.; Dasteridis, I.S.; Tzimas, A.A.; Chatzimitakos, T.G.; Stalikas, C.D. (2023). Benzophenones in the Environment: Occurrence, Fate and Sample Preparation in the Analysis. Molecules, 28, 1229. https://doi.org/10.3390/molecules28031229.
Downs, C.; Bishop, E.; Diaz-Cruz, M. S.; Haghshenas, S. A.; Stien, D.; Rodrigues, A. M.; Woodley, C. M.; Sunyer-Caldú, A.; Doust, S. N.; Espero, W.; Ward, G.; Farhangmehr, A.; Tabatabaee Samimi, S. M.; Risk, M. J.; Lebaron, P.; DiNardo, J. C. (2022). Oxybenzone contamination from sunscreen pollution and its ecological threat to Hanauma Bay, Oahu, Hawaii, U.S.A. Chemosphere, 291, 132880. https://doi.org/10.1016/j.chemosphere.2021.132880.
Tshemese, Z.; Deenadayalu, N.; Linganiso, L.Z.; Chetty, M. (2023). An Overview of Biogas Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context. Applied System Innovation, 6, 13. https://doi.org/10.3390/asi6010013.
Levine, A. (2020). Sunscreen use and awareness of chemical toxicity among beach goers in Hawaii prior to a ban on the sale of sunscreens containing ingredients found to be toxic to coral reef ecosystems. Marine Policy, 117, 103875. https://doi.org/10.1016/j.marpol.2020.103875.
Armando, D. (2020). Estimation of the discharge of sunscreens in aquatic environments of the Mexican Caribbean. Environments, 7(2), 15. https://doi.org/10.3390/environments7020015.
Sharma, P.; Jha, A. B.; Dubey, R. S.; Pessarakli, M. (2011). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012(1), 217037. https://doi.org/10.1155/2012/217037.
Zhong, X.; Downs, C. A.; Li, Y.; Zhang, Z.; Li, Y.; Liu, B.; Gao, H.; Li, Q. (2020). Comparison of toxicological effects of oxybenzone, avobenzone, octocrylene, and octinoxate sunscreen ingredients on cucumber plants (Cucumis sativus L.). Science of The Total Environment, 714, 136879. https://doi.org/10.1016/j.scitotenv.2020.136879.
Downs, C. A.; Kramarsky-Winter, E.; Segal, R.; Fauth, J.; Knutson, S.; Bronstein, O.; Ciner, F. R.; Jeger, R.; Lichtenfeld, Y.; Woodley, C. M.; Pennington, P.; Cadenas, K.; Kushmaro, A.; Loya, Y. (2016). Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin Islands. Archives of Environmental Contamination and Toxicology, 70, 265–288. https://doi.org/10.1007/s00244-015-0227-7.
Alseekh, S.; Perez de Souza, L.; Benina, M.; Fernie, A. R. (2020). The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 174, 112347. https://doi.org/10.1016/j.phytochem.2020.112347.
Yang, F.; Wei, Z.; Long, C.; Long, L. (2023). Toxicological effects of oxybenzone on the growth and bacterial composition of Symbiodiniaceae. Environmental Pollution, 317, 120807. https://doi.org/10.1007/s40726-022-00221-y.
Moreira, A. L. P.; Luchiari, A. C. (2022). Effects of oxybenzone on zebrafish behavior and cognition. Science of The Total Environment, 808, 152101. https://doi.org/10.1016/j.scitotenv.2021.152101.
Staniek, A.; Bouwmeester, H.; Fraser, P. D.; Kayser, O.; Martens, S.; Tissier, A.; Wessjohann, L.; Warzecha, H. (2013). Natural products – modifying metabolite pathways in plants. Biotechnology Journal, 8(10), 1159–1171. https://doi.org/10.1002/biot.201300224.
Lee, S.; Xiong, J.; Ru, S.; Patil, S.M.; Kurade, M.B.; Govindwar, S.P.; Oh, S.; Jeon, B. (2020). Toxicity of benzophenone-3 and its biodegradation in a freshwater microalga Scenedesmus obliquus. Journal of Hazardous Materials, 389, 122149. https://doi.org/10.1016/j.jhazmat.2020.122149.
Jeon, H.; Sarma, S.N.; Kim, Y.; Ryu, J. (2008). Toxicokinetics and metabolisms of benzophenone-type UV filters in rats. Toxicology, 248(2–3), 89–95. https://doi.org/10.1016/j.tox.2008.02.009.
Omeroglu, M.A.; Bakan, B.; Baltaci, M.O.; Arslan, N.P.; Ucar, S.; Elmas, S.; Adiguzel, A.; Taskin, M. (2025). Biodegradation of Benzophenone-3 in Non-Sterile Culture Process Using Klebsiella huaxiensis W2. Water Air Soil Pollution, 236(106). https://doi.org/10.1007/s11270-025-07744-2.
Haddock, J.D. (2010). Aerobic Degradation of Aromatic Hydrocarbons: Enzyme Structures and Catalytic Mechanisms. Handbook of Hydrocarbon and Lipid Microbiology, 1057–1069. https://doi.org/10.1007/978-3-540-77587-4_74.
G., A.; Luis, J.; Felipe, L.; Ernestina, E. (2020). Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico. Frontiers in Microbiology, 11, 521114. https://doi.org/10.3389/fmicb.2020.01100.
Wells, T.; Ragauskas, A.J. (2012). Biotechnological opportunities with the β-ketoadipate pathway. Trends in Biotechnology, 30(12), 627–637. https://doi.org/10.1016/j.tibtech.2012.09.008.
Dangi, B.; Oh, J. (2018). Bacterial CYP154C8 catalyzes carbon–carbon bond cleavage in steroids. FEBS Letters, 593(1), 67–79. https://doi.org/10.1002/1873-3468.13297.
Zhao, X.; Kumar, K.; Gross, M.A.; Kunetz, T.E.; Wen, Z. (2018). Evaluation of revolving algae biofilm reactors for nutrients and metals removal from sludge thickening supernatant in a municipal wastewater treatment facility. Water Research, 143, 467–478. https://doi.org/10.1016/j.watres.2018.07.001.
Nguyen, V.; Le, V.; Do, Q.; Le, T.; Vo, T. (2024). Emerging revolving algae biofilm system for algal biomass production and nutrient recovery from wastewater. Science of The Total Environment, 912, 168911. https://doi.org/10.1016/j.scitotenv.2023.168911.
Chen, S.; Xie, J.; Wen, Z. (2021). Removal of pharmaceutical and personal care products (PPCPs) from waterbody using a revolving algal biofilm (RAB) reactor. Journal of Hazardous Materials, 406, 124284. https://doi.org/10.1016/j.jhazmat.2020.124284.
Torres, M.A.; Barros, M.P.; Campos, S.C.; Pinto, E.; Rajamani, S.; Sayre, R.T.; Colepicolo, P. (2008). Biochemical biomarkers in algae and marine pollution: A review. Ecotoxicology and Environmental Safety, 71(1), 1–15. https://doi.org/10.1016/j.ecoenv.2008.05.009.
Wang, Y.H.; Liu, J.Z.; Kang, D.; Wu, C.H. (2017). Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review. Reviews in Environmental Science and Biotechnology, 16, 717–735. https://doi.org/10.1007/s11157-017-9446-x.
Nelson, M.J.; Nakhla, G.; Zhu, J. (2017). Fluidized-bed bioreactor applications for biological wastewater treatment: A review of research and developments. Engineering, 3(3), 330–342. https://doi.org/10.1016/j.eng.2017.03.021.
Özkaya, B.; Kaksonen, A.H.; Sahinkaya, E.; Puhakka, J.A. (2019). Fluidized bed bioreactor for multiple environmental engineering solutions. Water Research, 150, 452–465. https://doi.org/10.1016/j.watres.2018.11.061.
Wlizło, K.; Siwulski, M.; Kowalska-Krochmal, B.; Wiater, A. (2024). Exploring the Potential of Fungal Biomass for Bisphenol A Removal in Aquatic Environments. International Journal of Molecular Sciences, 25, 11388. https://doi.org/10.3390/ijms252111388.
Garcia, H.A.; Hoffman, C.M.; Kinney, K.A.; Lawler, D.F. (2011). Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent. Water Research, 45(5), 1921–1932. https://doi.org/10.1016/j.watres.2010.12.027.
Langford, K.H.; Reid, M.J.; Fjeld, E.; Øxnevad, S.; Thomas, K.V. (2015). Environmental occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway. Environment International, 80, 1–7. https://doi.org/10.1016/j.envint.2015.03.012.
Ramos, S.; Homem, V.; Alves, A.; Santos, L. (2015). A review of organic UV-filters in wastewater treatment plants. Environment International, 86, 24–44. https://doi.org/10.1016/j.envint.2015.10.004.
Milutinov, J.; Pavlović, N.; Ćirin, D.; Atanacković Krstonošić, M.; Krstonošić, V. (2024). The Potential of Natural Compounds in UV Protection Products. Molecules, 29, 5409. https://doi.org/10.3390/molecules29225409.
Al-Mashaqbeh, O.; Alsafadi, D.; Dalahmeh, S.; Bartelt-Hunt, S.; Snow, D. (2019). Removal of Selected Pharmaceuticals and Personal Care Products in Wastewater Treatment Plant in Jordan. Water, 11, 2004. https://doi.org/10.3390/w11102004.
Tran, T.; Dang, B.T.; Thuy, L.T.T.T.; Hoang, H.G.; Bui, X.T.; Le, V.G.; Lin, C.; Nyugen, M.K.; Nyugen, K.Q.; Nguyen, P.T.; Binh, Q.A.; Bui, T.P.P. (2022). Advanced treatment technologies for the removal of organic chemical sunscreens from wastewater: A review. Current Pollution Reports, 8, 288–302. https://doi.org/10.1016/j.scitotenv.2020.136879.
Baek, J.H.; Kim, K.H.; Lee, Y.; Jeong, S.E.; Jin, H.M.; Jia, B.; Jeon, C.O. (2022). Elucidating the biodegradation pathway and catabolic genes of benzophenone-3 in Rhodococcus sp. S2-17. Environmental Pollution, 299, 118890. https://doi.org/10.1016/j.envpol.2022.118890.
Fagervold, S.; Rohée, C.; Rodrigues, A.; Stien, D.; Lebaron, P. (2021). Efficient degradation of the organic UV filter benzophenone-3 by Sphingomonas wittichii strain BP14P isolated from WWTP sludge. Science of The Total Environment, 758, 143674. https://doi.org/10.1016/j.scitotenv.2020.143674.
Illanes, A.; Cauerhff, A.; Wilson, L.; Castro, G.R. (2012). Recent trends in biocatalysis engineering. Bioresource Technology, 115, 48–57. https://doi.org/10.1016/j.biortech.2011.12.050.
Mgbechidinma, C.L.; Akan, O.D.; Mgbechidimma, O.M.M.; Wakil, S.M. (2024). Bioprospecting for sustainable and eco-friendly bioproducts: A case study of multi-enzyme production by soil microbes. Journal of Environmental Chemical Engineering, 12(6), 114340. https://doi.org/10.1016/j.jece.2024.114340.
Dhamorikar, R.S.; Lade, V.G.; Kewalramani, P.V.; Bindwal, A.B. (2024). Review on integrated advanced oxidation processes for water and wastewater treatment. Journal of Industrial and Engineering Chemistry, 138, 104–122. https://doi.org/10.1016/j.jiec.2024.04.037.
Kumari, P.; Kumar, A. (2023). Advanced oxidation process: A remediation technique for organic and non-biodegradable pollutant. Results in Surfaces and Interfaces, 11, 100122. https://doi.org/10.1016/j.rsurfi.2023.100122.
Morales, M.; Bonnefond, H.; Bernard, O. (2020). Rotating algal biofilm versus planktonic cultivation: LCA perspective. Journal of Cleaner Production, 257, 120547. https://doi.org/10.1016/j.jclepro.2020.120547.
Dey, S.; Samanta, P.; Ghosh, A.R.; Banerjee, S.; Sen, K. (2024). State-of-the-art microalgae-based bioreactor wastewater treatment for the elimination of emerging contaminants: A mechanistic review. Cleaner Water, 2, 100027. https://doi.org/10.1016/j.clwat.2024.100027.
Gross, M.; Mascarenhas, V.; Wen, Z. (2015). Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems. Biotechnology and Bioengineering, 112(10), 2040–2050. https://doi.org/10.1002/bit.25618.
Saravanan, A.; Kumar, P.S.; Vo, D.N.; Jeevanantham, S.; Karishma, S.; Yaashikaa, P. (2021). A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. Journal of Hazardous Materials, 419, 126451. https://doi.org/10.1016/j.jhazmat.2021.126451.
Patwardhan, S.B.; Pandit, S.; Ghosh, D.; Dhar, D.W.; Banerjee, S.; Joshi, S.; Gupta, P.K.; Lahiri, D.; Nag, M.; Ruokolainen, J.; Ray, R.R.; Kumar Kesari, K. (2022). A concise review on the cultivation of microalgal biofilms for biofuel feedstock production. Biomass Conversion and Biorefinery, 14. https://doi.org/10.1007/s13399-022-02783-9.
Ennaceri, H.; Ishika, T.; Mkpuma, V.O.; Moheimani, N.R. (2023). Microalgal biofilms: Towards a sustainable biomass production. Algal Research, 72, 103124. https://doi.org/10.1016/j.algal.2023.103124.
Clément-Larosière, B.; Lopes, F.; Gonçalves, A.; Taidi, B.; Benedetti, M.; Minier, M.; Pareau, D. (2014). Carbon dioxide biofixation by Chlorella vulgaris at different CO₂ concentrations and light intensities. Engineering in Life Sciences, 14(5), 509–519. https://doi.org/10.1002/elsc.201200212.
Chantarasiri, A.; Ungwiwatkul, S. (2924). Effects of CO2 Aeration and Light Supply on the Growth and Lipid Production of a Locally Isolated Microalga, Chlorella variabilis RSM09. Applied Science, 14, 10512. https://doi.org/10.3390/app142210512.
Medici, A.; Luongo, G.; Di Fabio, G.; Zarrelli, A. (2022). Environmental Fate of Organic Sunscreens during Water Disinfection Processes: The Formation of Degradation By-Products and Their Toxicological Profiles. Molecules, 27, 4467. https://doi.org/10.3390/molecules27144467.
SUBMITTED: 15 September 2025
ACCEPTED: 09 November 2025
PUBLISHED:
12 November 2025
SUBMITTED to ACCEPTED: 55 days
DOI:
https://doi.org/10.53623/tasp.v5i2.824