 ,                    
                                            Risky Ayu Kristanti
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3
                    ,                    
                                            Risky Ayu Kristanti
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3                                                                                                                                                                                                                                                
    
                                             
                                        
                    				
        Organophosphates (OPs) were synthetic chemical compounds that had been applied in household products as well as in agricultural and industrial sectors. Although OPs had proven effective, particularly as pesticide ingredients, their persistence in the environment had raised concerns regarding impacts on ecosystems, the environment, and human health. This study addressed the occurrences and negative impacts of OPs, with a primary focus on microbial degradation as a bioremediation strategy. While various degradation methods had been developed, microbial degradation showed strong potential as a sustainable and cost-effective approach. This review aimed to examine the mechanisms, benefits, and limitations of microbial degradation of OPs, thereby addressing the knowledge gap related to its real-world applications. Microbial degradation involved the use of bacteria capable of breaking down OPs through enzyme production, transforming them into less harmful substances. In comparison with chemical or physical methods, microbial degradation was more environmentally friendly, cost-effective, and adaptable to surrounding conditions. By synthesizing findings from previous studies, the report highlighted both the strengths and shortcomings of microbial degradation in mitigating OPs contamination. The findings underscored its promise as a viable solution, while also pointing to the need for further research and improved frameworks.
López-Benítez, A.; Guevara-Lara, A.; Domínguez-Crespo, M.A.; Andraca-Adame, J.A.; Torres-Huerta, A.M. (2024). Concentrations of organochlorine, organophosphorus, and pyrethroid pesticides in rivers worldwide (2014–2024): A review. Sustainability, 16, 8066. https://doi.org/10.3390/su16188066.
Zou, X. (2025). A review of the properties, transport, and fate of organophosphate esters in polar snow and ice. Sustainability, 17, 2493. https://doi.org/10.3390/su17062493.
Edwards, F.L.; Tchounwou, P.B. (2005). Environmental toxicology and health effects associated with methyl parathion exposure – A scientific review. International Journal of Environmental Research and Public Health, 2, 430–441. https://doi.org/10.3390/ijerph2005030007.
Wang, Y.; Wang, L.; Li, Y. (2025). Organophosphorus pesticides management strategies: Prohibition and restriction multi-category multi-class models, environmental transformation risks, and special attention list. Toxics, 13, 16. https://doi.org/10.3390/toxics13010016.
Leskovac, A.; Petrović, S. (2023). Pesticide use and degradation strategies: Food safety, challenges and perspectives. Foods, 12, 2709. https://doi.org/10.3390/foods12142709.
Santos, M.; Rebola, S.; Evtuguin, D.V. (2025). Soil remediation: Current approaches and emerging bio-based trends. Soil Systems, 9, 35. https://doi.org/10.3390/soilsystems9020035.
Bule Možar, K.; Miloloža, M.; Martinjak, V.; Cvetnić, M.; Ocelić Bulatović, V.; Mandić, V.; Bafti, A.; Ukić, Š.; Kučić Grgić, D.; Bolanča, T. (2023). Bacteria and yeasts isolated from the environment in biodegradation of PS and PVC microplastics: Screening and treatment optimization. Environments, 10, 207. https://doi.org/10.3390/environments10120207.
Pashirova, T.; Salah-Tazdaït, R.; Tazdaït, D.; Masson, P. (2024). Applications of microbial organophosphate-degrading enzymes to detoxification of organophosphorous compounds for medical countermeasures against poisoning and environmental remediation. International Journal of Molecular Sciences, 25, 7822. https://doi.org/10.3390/ijms25147822.
Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18, 1112. https://doi.org/10.3390/ijerph18031112.
Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. (2021). Pesticides in drinking water—A review. International Journal of Environmental Research and Public Health, 18, 468. https://doi.org/10.3390/ijerph18020468.
Pyambri, M.; Jaumot, J.; Bedia, C. (2025). Toxicity assessment of organophosphate flame retardants using new approach methodologies. Toxics, 13, 297. https://doi.org/10.3390/toxics13040297.
Song, X.; Zhu, S.; Hu, L.; Chen, X.; Zhang, J.; Liu, Y.; Bu, Q.; Ma, Y. (2024). A review of the distribution and health effect of organophosphorus flame retardants in indoor environments. Toxics, 12, 195. https://doi.org/10.3390/toxics12030195.
Omo-Okoro, P.; Ofori, P.; Amalapridman, V.; Dadrasnia, A.; Abbey, L.; Emenike, C. (2025). Soil pollution and its interrelation with interfacial chemistry. Molecules, 30, 2636. https://doi.org/10.3390/molecules30122636.
Boonupara, T.; Udomkun, P.; Khan, E.; Kajitvichyanukul, P. (2023). Airborne pesticides from agricultural practices: A critical review of pathways, influencing factors, and human health implications. Toxics, 11, 858. https://doi.org/10.3390/toxics11100858.
Wang, Y.; Zhao, Y.; Han, X.; Wang, J.; Wu, C.; Zhuang, Y.; Liu, J.; Li, W. (2023). A review of organophosphate esters in aquatic environments: Levels, distribution, and human exposure. Water, 15, 1790. https://doi.org/10.3390/w15091790.
Li, A.; Zheng, G.; Chen, N.; Xu, W.; Li, Y.; Shen, F.; Wang, S.; Cao, G.; Li, J. (2022). Occurrence characteristics and ecological risk assessment of organophosphorus compounds in a wastewater treatment plant and upstream enterprises. Water, 14, 3942. https://doi.org/10.3390/w14233942.
Zhou, G.; Zhang, Y.; Wang, Z.; Li, M.; Li, H.; Shen, C. (2024). Distribution characteristics and ecological risk assessment of organophosphate esters in surface soils of China. Toxics, 12, 686. https://doi.org/10.3390/toxics12090686.
Aroniadou-Anderjaska, V.; Figueiredo, T.H.; de Araujo Furtado, M.; Pidoplichko, V.I.; Braga, M.F.M. (2023). Mechanisms of organophosphate toxicity and the role of acetylcholinesterase inhibition. Toxics, 11, 866. https://doi.org/10.3390/toxics11100866.
Ahn, C.; Jeung, E.-B. (2023). Endocrine-disrupting chemicals and disease endpoints. International Journal of Molecular Sciences, 24, 5342. https://doi.org/10.3390/ijms24065342.
Tzouma, Z.; Dourou, P.; Diamanti, A.; Harizopoulou, V.; Papalexis, P.; Karampas, G.; Liepinaitienė, A.; Dėdelė, A.; Sarantaki, A. (2025). Associations between endocrine-disrupting chemical exposure and fertility outcomes: A decade of human epidemiological evidence. Life, 15, 993. https://doi.org/10.3390/life15070993.
Sun, Y.; Li, L.; Zhang, Q. (2016). Organophosphorus pesticide residues in vegetables of agricultural areas in China: Occurrence and dietary risk assessment. Environmental Science and Pollution Research, 23, 18823–18831. https://doi.org/10.1007/s11356-016-7064-6.
Fianko, J.R.; Donkor, A.; Lowor, S.; Yeboah, P.O.; Glover, E.T. (2016). Agrochemicals and the Ghanaian environment: A review. Environmental Systems Research, 5, 1–11. https://doi.org/10.1186/s40068-016-0063-4.
Olisah, C.; Okoh, O.O.; Okoh, A.I. (2023). Occurrence, levels, and risk assessment of organophosphate pesticides in environmental samples from Nigeria. Toxics, 11, 225. https://doi.org/10.3390/toxics11030225.
Mukherjee, I.; Gopal, M. (2009). Pesticide residues in tea ecosystem: Progress, problems, and perspectives. Environmental Monitoring and Assessment, 149, 457–464. https://doi.org/10.1007/s10661-008-0222-9.
Kalra, R.L.; Sangha, G.K.; Kumari, B.; Tandon, S.; Sharma, S.; Singh, B. (2005). Monitoring of butter and ghee (clarified butter fat) for pesticidal contamination from cotton belt of Haryana, India. Bulletin of Environmental Contamination and Toxicology, 74, 897–904. https://doi.org/10.1007/s00128-005-0685-0.
Amirahmadi, M.; Shoeibi, S.; Abdollahi, M.; Rastegar, H.; Khosrokhavar, R.; Pirali-Hamedani, M. (2013). Simultaneous multi-determination of pesticide residues in black tea leaves and infusion: A risk assessment study. Food Chemistry, 141, 3114–3119. https://doi.org/10.1016/j.foodchem.2013.05.137.
Rembischevski, P.; Li, Y.; van den Brink, P.J.; et al. (2024). Global monitoring of pesticide residues in chili peppers: A comprehensive review. Toxics, 12, 508. https://doi.org/10.3390/toxics12070508.
Keikotlhaile, B.M.; Spanoghe, P.; Steurbaut, W. (2023). Effects of food processing on pesticide residues in fruits and vegetables: A meta-analysis. Foods, 12, 400. https://doi.org/10.3390/foods12020400.
Mancuso, G.; Bencresciuto, G.F.; Lavrnić, S.; Toscano, A. (2021). Diffuse water pollution from agriculture: A review of nature-based solutions for nitrogen removal and recovery. Water, 13, 1893. https://doi.org/10.3390/w13141893.
Hussain, F.; Ahmed, S.; Muhammad Zaigham Abbas Naqvi, S.; Awais, M.; Zhang, Y.; Zhang, H.; Raghavan, V.; Zang, Y.; Zhao, G.; Hu, J. (2025). Agricultural non-point source pollution: Comprehensive analysis of sources and assessment methods. Agriculture, 15, 531. https://doi.org/10.3390/agriculture15050531.
Rad, S.M.; Ray, A.K.; Barghi, S. (2022). Water Pollution and Agriculture Pesticide. Clean Technologies, 4, 1088–1102. https://doi.org/10.3390/cleantechnol4040066.
Khoury, D.; Chimjarn, S.; Delhomme, O.; Millet, M. (2025). Gas–Particle Partitioning and Temporal Dynamics of Pesticides in Urban Atmosphere Adjacent to Agriculture. Atmosphere, 16, 873. https://doi.org/10.3390/atmos16070873.
El Afandi, G.; Irfan, M. (2024). Pesticides Risk Assessment Review: Status, Modeling Approaches, and Future Perspectives. Agronomy, 14, 2299. https://doi.org/10.3390/agronomy14102299.
Schirinzi, E.; Ricci, G.; Torri, F.; Mancuso, M.; Siciliano, G. (2024). Biomolecules of Muscle Fatigue in Metabolic Myopathies. Biomolecules, 14, 50. https://doi.org/10.3390/biom14010050.
Shelukhina, I.V.; Zhmak, M.N.; Lobanov, A.V.; Ivanov, I.A.; Garifulina, A.I.; Kravchenko, I.N.; Rasskazova, E.A.; Salmova, M.A.; Tukhovskaya, E.A.; Rykov, V.A.; et al. (2018). Azemiopsin, a Selective Peptide Antagonist of Muscle Nicotinic Acetylcholine Receptor: Preclinical Evaluation as a Local Muscle Relaxant. Toxins, 10, 34. https://doi.org/10.3390/toxins10010034.
Lackner, M.; Besharati, M. (2025). Agricultural Waste: Challenges and Solutions, a Review. Waste, 3, 18. https://doi.org/10.3390/waste3020018.
Gao, M.; Ni, Z.; Li, G.; Wu, G.; Huang, B. (2023). Study on Spontaneous Reactivation and Aging of Acetylcholinesterase Inhibited by Paraoxon and Malaoxon in Ten Species. International Journal of Molecular Sciences, 24, 14213. https://doi.org/10.3390/ijms241814213.
Svensson, F.G.; Österlund, L. (2023). Adsorption and Photo-Degradation of Organophosphates on Sulfate-Terminated Anatase TiO₂ Nanoparticles. Catalysts, 13, 526. https://doi.org/10.3390/catal13030526.
Guerrero Ramírez, J.R.; Ibarra Muñoz, L.A.; Balagurusamy, N.; Frías Ramírez, J.E.; Alfaro Hernández, L.; Carrillo Campos, J. (2023). Microbiology and Biochemistry of Pesticides Biodegradation. International Journal of Molecular Sciences, 24, 15969. https://doi.org/10.3390/ijms242115969.
Li, Y.; Fan, H.; Li, B.; Liu, X. (2024). Environmental Impact of Xenobiotic Aromatic Compounds and Their Biodegradation Potential in Comamonas testosteroni. International Journal of Molecular Sciences, 25, 13317. https://doi.org/10.3390/ijms252413317.
Liu, S.; Zhu, X.; Yan, Z.; Liu, H.; Zhang, L.; Chen, W.; Chen, S. (2023). The Isolate Pseudomonas multiresinivorans QL-9a Quenches the Quorum Sensing Signal and Suppresses Plant Soft Rot Disease. Plants, 12, 3037. https://doi.org/10.3390/plants12173037.
Lee, H.M.; Kim, H.R.; Jeon, E.; Yu, H.C.; Lee, S.; Li, J.; Kim, D.-H. (2020). Evaluation of the Biodegradation Efficiency of Four Various Types of Plastics by Pseudomonas aeruginosa Isolated from the Gut Extract of Superworms. Microorganisms, 8, 1341. https://doi.org/10.3390/microorganisms8091341.
Latip, W.; Knight, V.F.; Abdul Halim, N.; Ong, K.K.; Mohd Kassim, N.A.; Wan Yunus, W.M.Z.; Mohd Noor, S.A.; Mohamad Ali, M.S. (2019). Microbial Phosphotriesterase: Structure, Function, and Biotechnological Applications. Catalysts, 9, 671. https://doi.org/10.3390/catal9080671.
Mulbry, W.W.; Karns, J.S.; Kearney, P.C.; Nelson, J.O.; McDaniel, C.S.; Wild, J.R. (1986). Identification of a Plasmid-Borne Parathion Hydrolase Gene from Flavobacterium sp. by Southern Hybridization with opd from Pseudomonas diminuta. Applied and Environmental Microbiology, 51, 926–930. https://doi.org/10.1128/aem.51.5.926-930.1986.
Dong, Y.J.; Bartlam, M.; Sun, L.; Zhou, Y.F.; Zhang, Z.P.; Zhang, C.; Rao, Z.; Zhang, X.E. (2005). Crystal Structure of Methyl Parathion Hydrolase from Pseudomonas sp. WBC-3. Journal of Molecular Biology, 353, 655–663. https://doi.org/10.1016/j.jmb.2005.08.057.
Horne, I.; Sutherland, T.D.; Harcourt, R.L.; Russell, R.J.; Oakeshott, J.G. (2002). Identification of an opd (Organophosphate Degradation) Gene in Burkholderia cepacia. Applied and Environmental Microbiology, 68, 3371–3376. https://doi.org/10.1128/AEM.68.7.3371-3376.2002.
Mackness, M.I.; Arrol, S.; Durrington, P.N. (1991). Paraoxonase Prevents Accumulation of Lipoperoxides in Low-Density Lipoprotein. FEBS Letters, 286, 152–154. https://doi.org/10.1016/0014-5793(91)80962-3.
Singh, B.K. (2009). Organophosphorus-Degrading Bacteria: Ecology and Industrial Applications. Nature Reviews Microbiology, 7, 156–164. https://doi.org/10.1038/nrmicro2050.
Wheelock, C.E.; Shan, G.; Ottea, J. (2005). Overview of Carboxylesterases and Their Role in the Metabolism of Insecticides. Journal of Pesticide Science, 30, 75–83. https://doi.org/10.1584/jpestics.30.75.
Li, X.; He, J.; Li, S. (2007). Isolation of a Chlorpyrifos-Degrading Bacterium, Burkholderia cepacia, and Cloning of the mpd Gene. Research in Microbiology, 158, 143–149. https://doi.org/10.1016/j.resmic.2006.11.006.
Gupta, R.D.; Goldsmith, M.; Ashani, Y.; Simo, Y.; Mullokandov, G.; Bar, H.; Ben-David, M.; Leader, H.; Margalit, R.; Silman, I.; Sussman, J.L.; Tawfik, D.S. (2011). Directed Evolution of Hydrolases for Prevention of G-Type Nerve Agent Intoxication. Nature Chemical Biology, 7, 120–125. https://doi.org/10.1038/nchembio.502.
Afriat, L.; Roodveldt, C.; Manco, G.; Tawfik, D.S. (2006). The Latent Promiscuity of Newly Identified Microbial Lactonases is Linked to a Recently Diverged Phosphotriesterase. Biochemistry, 45, 13677–13686. https://doi.org/10.1021/bi061268r.
Cardozo, M.; de Almeida, J.S.F.D.; Cavalcante, S.F.d.A.; Salgado, J.R.S.; Gonçalves, A.S.; França, T.C.C.; Kuca, K.; Bizzo, H.R. (2020). Biodegradation of Organophosphorus Compounds Predicted by Enzymatic Process Using Molecular Modelling and Observed in Soil Samples Through Analytical Techniques and Microbiological Analysis: A Comparison. Molecules, 25, 58. https://doi.org/10.3390/molecules25010058.
Montazer, Z.; Habibi Najafi, M.B.; Levin, D.B. (2020). Challenges with Verifying Microbial Degradation of Polyethylene. Polymers, 12, 123. https://doi.org/10.3390/polym12010123.
                 
                                            SUBMITTED: 02 September 2025
                                        
                                            ACCEPTED: 24 October 2025
                    
                                            PUBLISHED:
                                                                            31 October 2025
                                                                                                                                        
SUBMITTED to ACCEPTED: 53 days
                                        
                
                                  
                 
DOI: 
                 https://doi.org/10.53623/tasp.v5i2.807