Skip to main content

Land Degradation Detection in Urban Areas Using Spatial Modelling and Semi-Automatic Classification of Satellite Imagery Data

Author(s): Riska Ayu Purnamasari 1 ORCID https://orcid.org/0000-0002-9844-7526 , Marwan Setiawan 2 ORCID https://orcid.org/0000-0003-2754-0640 , Wardah Wardah 2 ORCID https://orcid.org/0009-0000-6618-8702
Author(s) information:
1 Department of Soil Science, Faculty of Agriculture, Universitas Gadjah Mada, Jalan Flora, Bulaksumur, Yogyakarta 55281, Indonesia
2 Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Indonesia Jl. Raya Jakarta Bogor Km. 46, Cibinong, Bogor Regency, West Java 16911, Indonesia

Corresponding author

Urban land degradation poses a growing challenge in rapidly developing countries like Indonesia, where population growth and limited space drive uncontrolled land cover changes. This study aims to detect land degradation in urban areas through spatial modelling and semi-automatic classification of multi-temporal remote sensing imagery. Landsat-5 Thematic Mapper (TM) image from year 2011 and Landsat-9 Operational Land Imager collection 2 (OLI-2) image from year 2023 data were acquired from the The United States Geological Survey (USGS). Image pre-processing included band stacking, subsetting, and enhancement to improve visual interpretation. Semi-automatic supervised classification was applied to map seven land cover classes: agricultural dry land, rice field, forest, plantation, non-agricultural land, water body, and settlement. Training data and validation were supported by Google Earth Pro, official sources, and field surveys using random sampling. Change detection analysis revealed a 1664.65 ha increase in industrial areas, accompanied by significant reductions in rice fields (−1726.92 ha) and dry farmland (−1644.57 ha). The classification accuracy reached 80.24% and 75.11%, with kappa coefficients of 0.76 and 0.65, respectively. Results indicate that urban expansion is a key driver of land degradation, particularly through the loss of productive agricultural land. This research demonstrates the effectiveness of remote sensing-based spatial modelling and classification techniques for monitoring urban land degradation and informing sustainable land use planning.

Previous article
Next article

Smith, P.; Gregory, P. J.; Van Vuuren, D.; Obersteiner, M.; Havlík, P.; Rounsevell, M.; Bellarby, J. (2010). Competition for land. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2941‒2957. https://doi.org/10.1098/rstb.2010.0127.

Xiao, Y.; Mignolet, C.; Mari, J. F.; Benoît, M. (2014). Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: A case from France. Computers and Electronics in Agriculture, 102, 51‒63. https://doi.org/10.1016/j.compag.2014.01.010.

Haberl, H. (2015). Competition for land: A sociometabolic perspective. Ecological Economics, 119, 424‒431. https://doi.org/10.1016/j.ecolecon.2014.10.002.

Hatab, A. A.; Cavinato, M. E. R.; Lindemer, A.; Lagerkvist, C. J. (2019). Urban sprawl, food security and agricultural systems in developing countries: A systematic review of the literature. Cities, 94, 129‒142. https://doi.org/10.1016/j.cities.2019.06.001.

Wu, K. Y.; Ye, X. Y.; Qi, Z. F.; Zhang, H. (2013). Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities, 31, 276‒284. https://doi.org/10.1016/j.cities.2012.08.003.

Altieri, M. A.; Companioni, N.; Cañizares, K.; Murphy, C.; Rosset, P.; Bourque, M.; Nicholls, C. I. (1999). The greening of the “barrios”: Urban agriculture for food security in Cuba. Agriculture and Human Values, 16, 131‒140. https://doi.org/10.1023/A:1007545304561.

Zezza, A.; Tasciotti, L. (2010). Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries. Food Policy, 35(4), 265‒273. https://doi.org/10.1016/j.foodpol.2010.04.007.

Satterthwaite, D.; McGranahan, G.; Tacoli, C. (2010). Urbanization and its implications for food and farming. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2809‒2820. https://doi.org/10.1098/rstb.2010.0136.

Harini, R.; Yunus, H. S.; Kasto; Hartono, S. (2012). Agricultural land conversion: determinants and impact for food sufficiency in Sleman regency. Indonesian Journal of Geography, 44(2), 120‒133.

Bajocco, S.; Smiraglia, D.; Scaglione, M.; Raparelli, E.; Salvati, L. (2018). Exploring the role of land degradation on agricultural land use change dynamics. Science of the Total Environment, 636, 1373‒1381. https://doi.org/10.1016/j.scitotenv.2018.05.119.

Firman, T. (2017). The urbanization of Java, 2000‒2010: Towards 'the island of mega-urban regions. Asian Population Studies, 13(1), 50‒66. https://doi.org/10.1080/17441730.2016.1247587.

Doydee, P. (2005). Coastal landuse change detection using remote sensing technique: Case study in Banten Bay, West Java Island, Indonesia. Agriculture and Natural Resources, 39(1), 159‒164. https://li01.tci-thaijo.org/index.php/anres/article/view/243296.

Tassi, A.; Massetti, A.; Gil, A. (2022). The spectralrao-monitoring Python package: A RAO's Q diversity index-based application for land-cover/land-use change detection in multifunctional agricultural areas. Computers and Electronics in Agriculture, 196, 106861. https://doi.org/10.1016/j.compag.2022.106861.

da Silveira, F.; Lermen, F. H.; Amaral, F. G. (2021). An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, 189, 106405. https://doi.org/10.1016/j.compag.2021.106405.

Gandharum, L.; Mulyani, M. E.; Hartono, D. M.; Karsidi, A.; Ahmad, M. (2021). Remote sensing versus the area sampling frame method in paddy rice acreage estimation in Indramayu regency, West Java province, Indonesia. International Journal of Remote Sensing, 42(5), 1738‒1767. https://doi.org/10.1080/01431161.2020.1842541.

Purnamasari, R. A.; Noguchi, R.; Ahamed, T. (2019). Land suitability assessments for yield prediction of cassava using geospatial fuzzy expert systems and remote sensing. Computers and Electronics in Agriculture, 166, 105018. https://doi.org/10.1016/j.compag.2019.105018.

Lobell, D. B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 164, 324‒333. https://doi.org/10.1016/j.rse.2015.04.021.

Guan, K.; Li, Z.; Rao, L. N.; Gao, F.; Xie, D.; Hien, N. T.; Zeng, Z. (2018). Mapping paddy rice area and yields over Thai Binh Province in Viet Nam from MODIS, Landsat, and ALOS-2/PALSAR-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(7), 2238‒2252. https://doi.org/10.1109/JSTARS.2018.2834383.

Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J. E. (2018). Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2's red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience & Remote Sensing, 55(3), 331‒354. https://doi.org/10.1080/15481603.2017.1370169.

Arekhi, M.; Goksel, C.; Balik Sanli, F.; Senel, G. (2019). Comparative evaluation of the spectral and spatial consistency of Sentinel-2 and Landsat-8 OLI data for Igneada longos forest. ISPRS International Journal of Geo-Information, 8(2), 56. https://doi.org/10.3390/ijgi8020056.

Dornik, A.; Cheţan, M. A.; Drăguţ, L.; Iliuţă, A.; Dicu, D. D. (2022). Importance of the mapping unit on the land suitability assessment for agriculture. Computers and Electronics in Agriculture, 201, 107305. https://doi.org/10.1016/j.compag.2022.107305.

Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91‒106. https://doi.org/10.1016/j.isprsjprs.2013.03.006.

Jiang, D.; Huang, Y.; Zhuang, D.; Zhu, Y.; Xu, X.; Ren, H. (2012). A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery. PLoS One, 7(9), e45889. https://doi.org/10.1371/journal.pone.0045889.

Arvor, D.; Betbeder, J.; Daher, F. R.; Blossier, T.; Le Roux, R.; Corgne, S.; da Silva Junior, C. A. (2021). Towards user-adaptive remote sensing: Knowledge-driven automatic classification of Sentinel-2 time series. Remote Sensing of Environment, 264, 112615. https://doi.org/10.1016/j.rse.2021.112615.

García-Álvarez, D.; Camacho Olmedo, M. T.; Paegelow, M.; Mas, J. F. (2022). Land use cover datasets and validation tools: Validation practices with QGIS. Lecture Notes in Geoinformation and Cartography, Springer, Cham. https://doi.org/10.1007/978-3-030-90998-7.

Yuh, Y. G.; Tracz, W.; Matthews, H. D.; Turner, S. E. (2023). Application of machine learning approaches for land cover monitoring in northern Cameroon. Ecological Informatics, 74, 101955. https://doi.org/10.1016/j.ecoinf.2022.101955.

Olofsson, P.; Foody, G. M.; Herold, M.; Stehman, S. V.; Woodcock, C. E.; Wulder, M. A. (2014). Good practices for estimating area and assessing the accuracy of land change. Remote Sensing of Environment, 148, 42‒57. https://doi.org/10.1016/j.rse.2014.02.015.

Yahaya, T. O.; Salisu, T. F.; Yunusa, A.; John, E.; Yusuf, A. B.; Umar, A. K.; Abe, O. (2023). Assessment of anthropogenic impact on ecosystem service safety of Agboyi River in Lagos, Southwestern, Nigeria. Tropical Aquatic and Soil Pollution, 3(2), 184‒195. https://doi.org/10.53623/tasp.v3i2.281.

Gandharum, L.; Hartono, D. M.; Karsidi, A.; Ahmad, M. (2022). Monitoring urban expansion and loss of agriculture on the north coast of West Java province, Indonesia, using Google Earth Engine and intensity analysis. The Scientific World Journal, 2022(1), 3123788. https://doi.org/10.1155/2022/3123788.

Gandharum, L.; Hartono, D. M.; Karsidi, A.; Ahmad, M.; Prihanto, Y.; Mulyono, S.; Alhasanah, F. (2024). Past and future land use change dynamics: Assessing the impact of urban development on agricultural land in the Pantura Jabar region, Indonesia. Environmental Monitoring and Assessment, 196(7), 645. https://doi.org/10.1007/s10661-024-12889-3.

About this article

SUBMITTED: 21 July 2025
ACCEPTED: 18 August 2025
PUBLISHED: 29 August 2025
SUBMITTED to ACCEPTED: 29 days
DOI: https://doi.org/10.53623/tasp.v5i2.775

Cite this article
Purnamasari, R. A., Setiawan, M. ., & Wardah, W. (2025). Land Degradation Detection in Urban Areas Using Spatial Modelling and Semi-Automatic Classification of Satellite Imagery Data. Tropical Aquatic and Soil Pollution, 5(2), 110–124. https://doi.org/10.53623/tasp.v5i2.775
Accessed
41
Citations
0
Share this article