Skip to main content
Search for Articles:
Tropical Aquatic and Soil Pollution

Search Filter

Years between

Search Results:

Search Parameters:
Keyword = polyethylene
Journal = Tropical Aquatic and Soil Pollution
Found 2 items.
Open Access
Some Behavioural and Physiological Effects of Plastics (Polyethylene) on Fish
by Ekinadose Orose, Okechukwu Kenneth Wokeh, Chidinma Georginia Okey-Wokeh

Trop. Aqua. Soil Pollut. 493 views
Waste generation and disposal, particularly of plastics, have grown significantly over time due to the rapid expansion of urban development. Aquatic species are especially threatened by plastic pollution because the aquatic ecosystem serves as a sink for all contaminants. The capacity for regular development and reproduction is crucial for both human and wildlife health. The endocrine system, which comprises numerous glands that emit hormones to control blood sugar, growth, reproduction, metabolism, and the development of the brain, normally controls these functions. The majority of the synthetic organic chemicals used in plastics come from petroleum. It is well known that their effects cause the endocrine system's regular operation to be disrupted. Plastics are produced at a low cost, and their light weight and adaptability make them candidates for a wide range of uses in all facets of daily life. Plastic waste can enter the ecosystem through waste discharges from oil and gas platforms, aquaculture, and landfills, as well as through litter such as bags and plastic bits used as abrasives. Because they include indigestible particles that fill the stomach and lessen appetite, plastics have been implicated in harming the health of a variety of creatures. They were also discovered in the gastrointestinal tract of individual fish after one week, which disrupted the food's flow to the intestinal mucosa and had an impact on the fish's growth and physical condition. Additionally, fish exposed to plastics have been shown to exhibit changed behavior, decreased sperm motility, and increased thyroid hormone production. Therefore, exposure to varied amounts of polyethylene impairs an organism's normal physiological functioning and has the potential to impact negatively on both the health of the organism and its offspring. This review was aimed at highlighting the risks of plastic exposure to fish and people through the food chain. Full text

Open Access
Abundance and Characteristics of Microplastics in the Soil of a Higher Education Institution in China
by Kuok Ho Daniel Tang, Yuxin Luo

Trop. Aqua. Soil Pollut. 806 views
While microplastics have been detected in various spheres of the environment, there are few studies examining their abundance in higher education institutions, where their exposure to students and staff could raise concern. This study aims to quantify and characterise the microplastics in the soil of a higher education institution in China. Surface soil samples were collected in triplicate from nine sampling sites distributed evenly across teaching, recreational, and residential areas on campus. The soil samples were sieved with a 5 mm screen, and the fractions passing through the sieve were digested with 30% hydrogen peroxide. Microplastics were density-separated from the digested soil and observed under the microscope. ATR-FTIR was used to determine their compositions. This study reveals a higher abundance of microplastics in teaching and residential areas (150–700 items/kg and 50–650 items/kg, respectively) as compared to recreational areas (0–450 items/kg), with the highest mean abundance (516.7 items/kg) recorded for residential areas. Fibrous and fragment microplastics (31.5% and 33.3%, respectively) were most common in the soil samples, with the former more prevalent in residential areas. There were more black microplastics (36.4%) and white microplastics (29.1%) than those of other colors. Microplastics  0.5 mm constituted the largest fraction (64.3%) of total microplastics recovered and polyethylene microplastics were most abundant (35.2%). This study contributes to a better understanding of microplastic pollution in the compounds of higher education institutions, which could be positively linked to the human activities within those institutions. Full text

1 - 2 of 2 items