Skip to main content
Search for Articles:
Tropical Aquatic and Soil Pollution
Share

Search Filter

Keyword
Author
Years between
to
2016
2024

Search Results:

Search Parameters:
Keyword = particle size
Journal = Tropical Aquatic and Soil Pollution
Found 3 items.
Open Access
Treatment of Hot Wash Liquor using Fly Ash
by Selvaraju Sivamani, Mutharasu Kavya, Vignesh Vinusha

Trop. Aqua. Soil Pollut. 209 views
Textile industries are the second largest water-consuming industries, next to agriculture. This research is aimed at investigating the utilization of fly ash as a low-cost adsorbent to treat hot wash liquor by employing one factor at a time. Contact time, effluent dosage, pH, mass of adsorbent, temperature, particle size, and agitation speed have been varied to find the optimum conditions for dye removal from hot wash liquor by fly ash. The results from the sorption process show that the maximum dye removal of 56.07% has been obtained at a time of 5 min, an effluent to water ratio of 9:1, pH of 11, an adsorbent dosage of 0.55 g/mL, a temperature of 27 °C, a fly ash particle size of 128 m and an agitation speed of 100 rpm. The analysis of the results was performed through adsorption capacity and percentage colour removal. Hence, the results suggested that fly ash could be used as an effective adsorbent for treating dyehouse effluents. Full text


Open Access
Abundance and Characteristics of Microplastics in the Soil of a Higher Education Institution in China
by Kuok Ho Daniel Tang, Yuxin Luo

Trop. Aqua. Soil Pollut. 806 views
While microplastics have been detected in various spheres of the environment, there are few studies examining their abundance in higher education institutions, where their exposure to students and staff could raise concern. This study aims to quantify and characterise the microplastics in the soil of a higher education institution in China. Surface soil samples were collected in triplicate from nine sampling sites distributed evenly across teaching, recreational, and residential areas on campus. The soil samples were sieved with a 5 mm screen, and the fractions passing through the sieve were digested with 30% hydrogen peroxide. Microplastics were density-separated from the digested soil and observed under the microscope. ATR-FTIR was used to determine their compositions. This study reveals a higher abundance of microplastics in teaching and residential areas (150–700 items/kg and 50–650 items/kg, respectively) as compared to recreational areas (0–450 items/kg), with the highest mean abundance (516.7 items/kg) recorded for residential areas. Fibrous and fragment microplastics (31.5% and 33.3%, respectively) were most common in the soil samples, with the former more prevalent in residential areas. There were more black microplastics (36.4%) and white microplastics (29.1%) than those of other colors. Microplastics  0.5 mm constituted the largest fraction (64.3%) of total microplastics recovered and polyethylene microplastics were most abundant (35.2%). This study contributes to a better understanding of microplastic pollution in the compounds of higher education institutions, which could be positively linked to the human activities within those institutions. Full text


Open Access
Adsorption of Remazol Brilliant Violet 5R (RBV-5R) and Remazol Brilliant Blue R (RBBR) from Aqueous Solution by Using Agriculture Waste
by Hong Jian Lai

Trop. Aqua. Soil Pollut. 1202 views
The ability of agricultural waste materials to remove synthetic dyes such as Remazol Brilliant Violet 5R (RBV-5R) and Remazol Brilliant Blue R (RBBR) from aqueous solutions was investigated. Dyes are a major source of water contamination that not only cause significant damage to water bodies but also have a negative effect on human health due to their high toxicity and carcinogenic nature. Agricultural wastes are renewable adsorbents because they are readily available and inexpensive, and they can also be used instead of conventional activated carbon. As a result, the removal of RBV-5R and RBBR from dye solutions by adsorption onto treated adsorbent was investigated in this review. The two best adsorbents out of ten were selected via a screening process with RBBR as the test dye. The key adsorbents in this analysis were coconut shells and mango seeds, which had the highest removal rate as compared to others. The experiment was continued with the chosen adsorbent to see how different initial dye concentrations, adsorbent dosage, contact time, pH, and particle size affected dye adsorption. The results show that different parameters have different effects on the removal rate and adsorption potential of the adsorbent. The adsorption of dye from aqueous solution onto adsorbent was investigated using Fourier transform infrared spectroscopy (FTIR) to investigate the functional groups of the adsorbent before and after the adsorption operation, and it was discovered that the functional group affected the effectiveness or removal rate as well as the adsorption capability of adsorbents. According to the findings, 5 gram mango seeds can extract 85.54 percent of RBV-5R with adsorption power of 1.26 mg/g. For 21 hours, coconut shells removed 74.39 percent of RBBR with an adsorption capacity of 8.01 mg/g. The findings indicated that these agricultural wastes could be useful as an alternative adsorbent for removing dye from aqueous solutions. Full text


1 - 3 of 3 items