Solís, M.; Solís, A.; Pérez, H.I.; Manjarrez, N.; Flores, M. (2012). Microbial decolouration of azo dyes: A review. Process Biochemistry, 47, 1723–1748. https://doi.org/10.1016/j.procbio.2012.08.014.
Adegoke, K.A.; Bello, O.S. (2015). Dye sequestration using agricultural wastes as adsorbents. Water Resources and Industry, 12, 8–24. https://doi.org/10.1016/j.wri.2015.09.002.
Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8.
Nguyen, T.A.; Juang, R.-S. (2013). Treatment of waters and wastewaters containing sulfur dyes: A review. Chemical Engineering Journal, 219, 109–117. https://doi.org/10.1016/j.cej.2012.12.102.
Hethnawi, A.; Nassar, N.N.; Manasrah, A.D.; Vitale, G. (2017). Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chemical Engineering Journal, 320, 389–404. https://doi.org/10.1016/j.cej.2017.03.057.
Rauf, M.A.; Salman Ashraf, S. (2012). Survey of recent trends in biochemically assisted degradation of dyes. Chemical Engineering Journal, 209, 520–530. https://doi.org/10.1016/j.cej.2012.08.015.
Cotillas, S.; Llanos, J.; Cañizares, P.; Clematis, D.; Cerisola, G.; Rodrigo, M.A.; Panizza, M. (2018). Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochimica Acta, 263, 1–7. https://doi.org/10.1016/j.electacta.2018.01.052.
Gao, Y.; Yang, B.; Wang, Q. (2018). Biodegradation and Decolorization of Dye Wastewater: A Review. IOP Conference Series: Earth and Environmental Science, 178, 12013. https://doi.org/10.1088/1755-1315/178/1/012013.
Tripathi, A.; Srivastava, S.K. (2011). Ecofriendly treatment of azo dyes: biodecolorization using bacterial strains. International Journal of Bioscience, Biochemistry and Bioinformatics, 1, 37.
Ali, H. (2010). Biodegradation of Synthetic Dyes—A Review. Water, Air, & Soil Pollution, 213, 251–273. https://doi.org/10.1007/s11270-010-0382-4.
Hassan, M.M.; Carr, C.M. (2018). A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere, 209, 201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043.
Imran, M.; Crowley, D.E.; Khalid, A.; Hussain, S.; Mumtaz, M.W.; Arshad, M. (2015). Microbial biotechnology for decolorization of textile wastewaters. Reviews in Environmental Science and Bio/Technology, 14, 73–92. https://doi.org/10.1007/s11157-014-9344-4.
Sandhya, S. (2010). Biodegradation of Azo Dyes Under Anaerobic Condition: Role of Azoreductase. In Biodegradation of Azo Dyes; Atacag Erkurt, H., Ed.; Springer: Berlin Heidelberg, Germany, Volume 9, pp. 39–57. https://doi.org/10.1007/698_2009_43.
Newman, M.C. (2019). Fundamentals of ecotoxicology: the science of pollution. Routledge: Oxfordshire, United Kingdom.
Rehman, K.; Shahzad, T.; Sahar, A.; Hussain, S.; Mahmood, F., Siddique, M.H.; Siddique, M.A.; Rashid, M.I. (2018). Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling. PeerJ - Life and Environment, 6, e4802.
Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13. https://doi.org/10.1016/j.desal.2011.07.019.
Tang, K.H.D. (2020). A Case Study Of The Environmental Impact Assessment Legislations In Sarawak, Malaysia. Asia Pacific Journal of Energy and Environment, 7, 47–54. https://doi.org/10.18034/apjee.v7i1.273.
Textile Industry Wastewater Discharge Quality Standards: Literature Review. (assessed on 1 Marchn 2022) Available online: https://wastewater.sustainabilityconsortium.org/downloads/ textile-industry-wastewater-discharge-quality-standards/.
Wang, L.; Ding, X.; Wu, X. (2013). Blue and grey water footprint of textile industry in China. Water Science and Technology, 68, 2485–2491. https://doi.org/10.2166/wst.2013.532.
Tang, L.; Yu, J.; Pang, Y.; Zeng, G.; Deng, Y., Wang, J.; Ren, X.; Ye, S.; Peng, B.; Feng, H. (2018). Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, 160–169. https://doi.org/10.1016/j.cej.2017.11.048.
Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090.
Tang, K.H.D.; Angela, J. (2019). Phytoremediation of crude oil-contaminated soil with local plant species. IOP Conference Series: Materials Science and Engineering, 495, 12054. https://doi.org/10.1088/1757-899x/495/1/012054.
Tang, K.H.D.; Kristanti, R.A. (2022). Bioremediation of perfluorochemicals: current state and the way forward. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-022-02694-z.
Choong, W.S.; Hadibarata, T.; Yuniarto, A.; Tang, K.H.D.; Abdullah, F., Syafrudin, M.; Al Farraj, D.A.; Al-Mohaimeed, A.M. (2021). Characterization of microplastics in the water and sediment of Baram River estuary, Borneo Island. Marine Pollution Bulletin, 172, 112880. https://doi.org/10.1016/j.marpolbul.2021.112880.
Tang, K.H.D. (2021). Interactions of Microplastics with Persistent Organic Pollutants and the Ecotoxicological Effects: A Review. Tropical Aquatic and Soil Pollution, 1(1), 24–34. https://doi.org/10.53623/tasp.v1i1.11.
Tang, K.H.D.; Awa, S.H.; Hadibarata, T. (2020). Phytoremediation of Copper-Contaminated Water with Pistia stratiotes in Surface and Distilled Water. Water, Air, & Soil Pollution, 231, 573. https://doi.org/10.1007/s11270-020-04937-9.
Kalyani, D.C.; Telke, A.A.; Dhanve, R.S.; Jadhav, J.P. (2009). Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. Journal of Hazardous Materials, 163, 735–742. https://doi.org/10.1016/j.jhazmat.2008.07.020.
Carvalho, M.C.; Pereira, C.; Gonçalves, I.C.; Pinheiro, H.M.; Santos, A.R.; Lopes, A.; Ferra, M.I. (2008). Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines. International Biodeterioration & Biodegradation, 62, 96–103. https://doi.org/10.1016/j.ibiod.2007.12.008.
Olukanni, O.D.; Osuntoki, A.A.; Gbenle, G.O. (2009). Decolourization of azo dyes by a strain of Micrococcus isolated from a refuse dump soil. Biotechnology, 8, 442–448. https://doi.org/10.3923/biotech.2009.442.448.
Ayed, L.; Mahdhi, A.; Cheref, A.; Bakhrouf, A. (2011). Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity and metabolites characterization. Desalination, 274, 272–277. https://doi.org/10.1016/j.desal.2011.02.024.
Bhattacharya, A.; Goyal, N.; Gupta, A. (2017). Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment. Extremophiles, 21, 479–490. https://doi.org/10.1007/s00792-017-0918-2.
Sari, I.P.; Simarani, K. (2019). Comparative static and shaking culture of metabolite derived from methyl red degradation by Lysinibacillus fusiformis strain W1B6. Royal Society Open Science, 6, 190152.
Pan, H.; Feng, J.; Cerniglia, C.E.; Chen, H. (2011). Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus. Journal of Industrial Microbiology and Biotechnology, 38, 1729–1738. https://doi.org/10.1007/s10295-011-0962-3.
Singh, R.P.; Singh, P.K.; Singh, R.L. (2014). Bacterial Decolorization of Textile Azo Dye Acid Orange by Staphylococcus hominis RMLRT03. Toxicology International, 21, 160–166. https://doi.org/10.4103/0971-6580.139797.
Tripathi, A.; Srivastava, S.K. (2011). Biodecolorization of Azo dye, Acid Orange 10, using different bacterial strains. Proceedings of 2nd International Conferences on Environmental Science and Technology, 6, V2-253.
Shah, B.; Jain, K.; Jiyani, H.; Mohan, V.; Madamwar, D. (2016). Microaerophilic Symmetric Reductive Cleavage of Reactive Azo Dye—Remazole Brilliant Violet 5R by Consortium VIE6: Community Synergism. Applied Biochemistry and Biotechnology, 180, 1029–1042. https://doi.org/10.1007/s12010-016-2150-4.
Waghmode, T.R.; Kurade, M.B.; Govindwar, S.P. (2011). Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360. International Biodeterioration & Biodegradation, 65, 479–486. https://doi.org/10.1016/j.ibiod.2011.01.010.
Meerbergen, K.; Willems, K.A.; Dewil, R.; Van Impe, J.; Appels, L.; Lievens, B. (2018). Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. Journal of Bioscience and Bioengineering, 125, 448–456. https://doi.org/10.1016/j.jbiosc.2017.11.008.
Kadam, A.A.; Telke, A.A.; Jagtap, S.S.; Govindwar, S.P. (2011). Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation. Journal of Hazardous Materials, 189, 486–494. https://doi.org/10.1016/j.jhazmat.2011.02.066.
Hai, F.I.; Yamamoto, K.; Nakajima, F.; Fukushi, K. (2008). Removal of structurally different dyes in submerged membrane fungi reactor—Biosorption/PAC-adsorption, membrane retention and biodegradation. Journal of Membrane Science, 325, 395–403. https://doi.org/10.1016/j.memsci.2008.08.006.
Gao, T.; Qin, D.; Zuo, S.; Peng, Y.; Xu, J.; Yu, B.; Song, H.; Dong, J. (2020). Decolorization and detoxification of triphenylmethane dyes by isolated endophytic fungus, Bjerkandera adusta SWUSI4 under non-nutritive conditions. Bioresources and Bioprocessing, 7, 53. https://doi.org/10.1186/s40643-020-00340-8.
Kolekar, Y.M.; Kodam, K.M. (2012). Decolorization of textile dyes by Alishewanella sp. KMK6. Applied Microbiology and Biotechnology, 95, 521–529. https://doi.org/10.1007/s00253-011-3698-0.
Oturkar, C.C.; Patole, M.S.; Gawai, K.R; Madamwar, D. (2013). Enzyme based cleavage strategy of Bacillus lentus BI377 in response to metabolism of azoic recalcitrant. Bioresource Technology, 130, 360–365. https://doi.org/10.1016/j.biortech.2012.12.019.
Guadie, A.; Gessesse, A.; Xia, S. (2018). Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated Rift Valley Soda lake. Chemosphere, 206, 59–69. https://doi.org/10.1016/j.chemosphere.2018.04.134.
Mishra, B.; Varjani, S.; Kumar, G.; Awasthi, M.K.; Awasthi, S.K., Sindhu, R.; Binod, P.; Rene, E.R.; Zhang, Z. (2020). Microbial approaches for remediation of pollutants: Innovations, future outlook, and challenges. Energy & Environment, 32, 1029–1058. https://doi.org/10.1177/0958305X19896781.
El-Sheekh, M.M.; Gharieb, M.M.; Abou-El-Souod, G.W. (2009). Biodegradation of dyes by some green algae and cyanobacteria. International Biodeterioration & Biodegradation, 63, 699–704. https://doi.org/10.1016/j.ibiod.2009.04.010.
Ishchi, T.; Sibi, G. (2020). Azo dye degradation by Chlorella vulgaris: optimization and kinetics. International Journal of Biological Chemistry, 14(1), 1–7. https://doi.org/10.3923/ijbc.2020.1.7.
Hadibarata, T.; Yusoff, A.R.M.; Kristanti, R.A. (2012). Acceleration of Anthraquinone-Type Dye Removal by White-Rot Fungus Under Optimized Environmental Conditions. Water, Air, & Soil Pollution, 223(8), 4669–4677. https://doi.org/10.1007/s11270-012-1177-6.
Deivasigamani, C.; Das, N. (2011). Biodegradation of Basic Violet 3 by Candida krusei isolated from textile wastewater. Biodegradation, 22, 1169–1180. https://doi.org/10.1007/s10532-011-9472-2.
Al-Tohamy, R.; Sun, J.; Fareed, M.F.; Kenawy, E.-R.; Ali, S.S. (2020). Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Scientific Reports, 10, 12370. https://doi.org/10.1038/s41598-020-69304-4.
Xiao, X.; Xu, C.C.; Wu, Y.M.; Cai, P.J.; Li, W.W.; Du, D.L.; Yu, H.Q. (2012). Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. Bioresource Technology, 110, 86–90. https://doi.org/10.1016/j.biortech.2012.01.099.
Prasad, A.S.A.; Rao, K.V.B. (2014). Aerobic biodegradation of azo dye Acid Black-24 by Bacillus halodurans. Journal of Environmental Biology, 35(3), 549. http://doi.org/10.1007/s40010-014-0163-3.
Jasińska, A.; Soboń, A.; Góralczyk-Bińkowska, A.; Długoński, J. (2019). Analysis of decolorization potential of Myrothecium roridum in the light of its secretome and toxicological studies. Environmental Science and Pollution Research, 26(25), 26313–26323. https://doi.org/10.1007/s11356-019-05324-6.
Ashrafi, S.D.; Rezaei, S.; Forootanfar, H.; Mahvi, A.H.; Faramarzi, M.A. (2013). The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. International Biodeterioration & Biodegradation, 85, 173–181. https://doi.org/10.1016/j.ibiod.2013.07.006.
Das, P.; Banerjee, P.; Zaman, A.; Bhattacharya, P. (2016). Biodegradation of two Azo dyes using Dietzia sp. PD1: process optimization using Response Surface Methodology and Artificial Neural Network. Desalination and Water Treatment, 57, 7293–7301. https://doi.org/10.1080/19443994.2015.1013993.
Neifar, M.; Chouchane, H.; Mahjoubi, M.; Jaouani, A.; Cherif, A. (2016). Pseudomonas extremorientalis BU118: a new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech, 6, 107. https://doi.org/10.1007/s13205-016-0425-7.
Verma, A.; Shirkot, P. (2014). Purification and Characterization of Thermostable Laccase from Thermophilic Geobacillus thermocatenulatus MS5 and its applications in removal of Textile Dyes. Scholars Academic Journal of Biosciences, 2, 479–485.
Rajhans, G.; Sen, S.K.; Barik, A.; Raut, S. (2020). Elucidation of fungal dye-decolourizing peroxidase (DyP) and ligninolytic enzyme activities in decolourization and mineralization of azo dyes. Journal of Applied Microbiology, 129, 1633–1643. https://doi.org/https://doi.org/10.1111/jam.14731.
Haq, I.; Raj, A.; Markandeya. (2018). Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere, 196, 58–68. https://doi.org/10.1016/j.chemosphere.2017.12.153.
Ajaz, M.; Rehman, A.; Khan, Z.; Nisar, M.A.; Hussain, S. (2019). Degradation of azo dyes by Alcaligenes aquatilis 3c and its potential use in the wastewater treatment. AMB Express, 9, 64. https://doi.org/10.1186/s13568-019-0788-3.
Franciscon, E.; Grossman, M.J.; Paschoal, J.A.R.; Reyes, F.G.R.; Durrant, L.R. (2012). Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus, 1, 37. https://doi.org/10.1186/2193-1801-1-37.
El-Sheekh, M.M.; Abou-El-Souod, G.W.; El Asrag, H.A. (2018). Biodegradation of Some Dyes by The Green Alga Chlorella vulgaris and the Cyanobacterium Aphanocapsa elachista . Egyptian Journal of Botany, 58, 311–320. https://doi.org/10.21608/ejbo.2018.2675.1145.
Tian, F.; Guo, G.; Zhang, C.; Yang, F.; Hu, Z.; Liu, C.; Wang, S.W. (2019). Isolation, cloning and characterization of an azoreductase and the effect of salinity on its expression in a halophilic bacterium. International Journal of Biological Macromolecules, 123, 1062–1069. https://doi.org/10.1016/j.ijbiomac.2018.11.175.
Pratiwi, D.; Prasetyo, D.J.; Poeloengasih, C.D. (2019). Adsorption of Methylene Blue dye using Marine algae Ulva lactuca. IOP Conference Series: Earth and Environmental Science, 251, 12012. https://doi.org/10.1088/1755-1315/251/1/012012.
Vats, A.; Mishra, S. (2017). Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16. Environmental Science and Pollution Research, 24, 11650–11662. https://doi.org/10.1007/s11356-017-8802-2.
Bankole, P.O.; Adekunle, A.A.; Obidi, O.F.; Chandanshive, V.V.; Govindwar, S.P. (2018). Biodegradation and detoxification of Scarlet RR dye by a newly isolated filamentous fungus, Peyronellaea prosopidis. Sustainable Environment Research, 28, 214–222. https://doi.org/10.1016/j.serj.2018.03.001.
Erden, E.; Kaymaz, Y.; Pazarlioglu, N.K. (2011). Biosorption kinetics of a direct azo dye Sirius Blue K-CFN by Trametes versicolor. Electronic Journal of Biotechnology, 14(2), 3. http://doi.org/10.2225/vol14-issue2-fulltext-8.
Ambrósio, S.T.; Vilar Júnior, J.C.; Da Silva, C.A.A.; Okada, K.; Nascimento, A.E.;, Longo, R.L.; Campos-Takaki, G.M. (2012). A Biosorption Isotherm Model for the Removal of Reactive Azo Dyes by Inactivated Mycelia of Cunninghamella elegans UCP542. Molecules, 17, 452-462. https://doi.org/10.3390/molecules17010452.
Lee, K.K.; Tang, K.H.D. (2020). Agaricales (Gilled Mushrooms) as Biosorbents of Synthetic Dye. Malaysian Journal of Medicine and Health Sciences, 16, 10–17.
Krishnamoorthy, R.; Jose, P.A.; Ranjith, M.; Anandham, R.; Suganya, K.; et al. (2018). Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3. Journal of Environmental Chemical Engineering, 6, 588–595. https://doi.org/10.1016/j.jece.2017.12.035.
Safarik, I.; Rego, L.F.T.; Borovska, M.; Mosiniewicz-Szablewska, E.; Weyda, F., Safarikova, M. (2007). New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme and Microbial Technology, 40, 1551–1556. https://doi.org/10.1016/j.enzmictec.2006.10.034.
Dixit, S.; Garg, S. (2019). Development of an efficient recombinant bacterium and its application in the degradation of environmentally hazardous azo dyes. International Journal of Environmental Science and Technology, 16, 7137–7146. https://doi.org/10.1007/s13762-018-2054-7.
Sun, J.; Li, Y.; Hu, Y.; Hou, B.; Xu, Q.; Zhang, Y.; Li, S. (2012). Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Biotechnology Letters, 34, 2023–2029. https://doi.org/10.1007/s10529-012-1002-8.
Fang, Z.-M.; Li, T.-L.; Chang, F.; Zhou, P.; Fang, W.; Hong, Y.Z.; Zhang, X.C.; Peng, H.; Xiao, Y.Z. (2012). A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresource Technology, 111, 36–41. hhttps://doi.org/10.1016/j.biortech.2012.01.172.
Eslami, M.; Amoozegar, M.A.; Asad, S. (2016). Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata. International Journal of Biological Macromolecules, 85, 111–116. https://doi.org/10.1016/j.ijbiomac.2015.12.065.
Morsy, S.A.G.Z.; Ahmad Tajudin, A.; Ali, M.S.M.; Shariff, F.M. (2020). Current Development in Decolorization of Synthetic Dyes by Immobilized Laccases. Frontiers in Microbiology, 11, 572309. https://doi.org/10.3389/fmicb.2020.572309.
Al-Fawwaz, A.T.; Abdullah, M. (2016). Decolorization of methylene blue and malachite green by immobilized Desmodesmus sp. isolated from North Jordan. International Journal of Environmental Science and Development, 7, 95. http://doi.org/10.7763/IJESD.2016.V7.748.
Alam, M.Z.; Khan, M.J.H.; Kabbashi, N.A.; Sayem, S.M.A. (2018). Development of an Effective Biosorbent by Fungal Immobilization Technique for Removal of Dyes. Waste and Biomass Valorization, 9, 681–690. https://doi.org/10.1007/s12649-016-9821-9.
Nguyen, T.A.; Fu, C.-C.; Juang, R.-S. (2016). Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads. Chemical Engineering Journal, 304, 313–324. https://doi.org/10.1016/j.cej.2016.06.102.
Ma, H.-F.; Meng, G.; Cui, B.-K.; Si, J.; Dai, Y.-C. (2018). Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes: Laccase immobilization and characterization. Chemical Engineering Research and Design, 132, 664–676. https://doi.org/10.1016/j.cherd.2018.02.008.
Zhang, W.; Yang, Q.; Luo, Q.; Shi, L.; Meng, S. (2020). Laccase-Carbon nanotube nanocomposites for enhancing dyes removal. Journal of Cleaner Production, 242, 118425. https://doi.org/10.1016/j.jclepro.2019.118425.
Tang, K.H.D.; Law, Y.W.E. (2019). Phytoremediation of soil contaminated with crude oil using Mucuna Bracteata. Research in Ecology, 1, 20-30. http://doi.org/10.30564/re.v1i1.739.
SUBMITTED: 16 March 2022
ACCEPTED: 15 April 2022
PUBLISHED:
16 April 2022
SUBMITTED to ACCEPTED: 30 days
DOI:
https://doi.org/10.53623/tasp.v2i1.72