Skip to main content

Biological Removal of Dyes from Wastewater: A Review of Its Efficiency and Advances

Author(s): Kuok Ho Daniel Tang 1 , Noura M. Darwish 2 , Abdullah M Alkahtani 3 , Mohamed Ragab AbdelGawwad 4 , Peter Karácsony 5
Author(s) information:
1 BNU-HKBU United International College
2 College of Sciece, Ai Shams University, Cairo, Egypt.
3 Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
4 Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210 Sarajevo, Bosnia and Herzegovina
5 University Research and Innovation Center, Óbuda University, Budapest, Bécsi út 96/B, 1034, Hungaria.

Corresponding author

Biological removal of dyes has been advocated due to its simplicity, cost-effectiveness, and low operational requirements in comparison to physicochemical methods of treating dye effluents. This paper aims to compare the efficiency of biological removal of dyes using bacteria, algae, and fungi, including yeasts, besides presenting the recent advances in the field. This paper reviewed scholarly articles published mainly between 2010 and 2021. It found bacteria could degrade a myriad of dyes. Different bacteria could degrade the same dye with different efficiencies. Similarly, one bacterial species could degrade multiple dyes with varying efficiencies. Though regarded as having a faster rate of dye biodegradation than fungi, this review finds bacteria to have comparable performance to fungi in decolorizing dyes, and it is worth mentioning that a few yeast species were reported to have very high efficiency in decolorizing dyes. Mixed bacteria or bacteria-fungus cultures were generally found to have better dye-decolorizing efficiency than pure cultures. Algae have relatively lower efficiency than bacteria and fungi in decolorizing dyes and might require longer contact time. New advances such as genetic engineering as well as immobilization of microorganisms and enzymes could improve the efficiency of dye biodegradation. Nonetheless, before biological removal of dyes can be feasibly applied, there are limitations that need to be overcome. Major limitations include the inconsistent performance of various organisms in decolorizing dyes; the complexity of optimization; inability to completely decolorize dyes; potential formation of toxic by-products upon decolorization of dyes; safety concerns of immobilization materials; and cost and technical feasibility of biological removal of dyes. This review has the significance of highlighting the important bottlenecks of the current biological dye removal technology, which could pave the way for breakthroughs in this domain of research.

Solís, M.; Solís, A.; Pérez, H.I.; Manjarrez, N.; Flores, M. (2012). Microbial decolouration of azo dyes: A review. Process Biochemistry, 47, 1723–1748. https://doi.org/10.1016/j.procbio.2012.08.014.

Adegoke, K.A.; Bello, O.S. (2015). Dye sequestration using agricultural wastes as adsorbents. Water Resources and Industry, 12, 8–24. https://doi.org/10.1016/j.wri.2015.09.002.

Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8.

Nguyen, T.A.; Juang, R.-S. (2013). Treatment of waters and wastewaters containing sulfur dyes: A review. Chemical Engineering Journal, 219, 109–117. https://doi.org/10.1016/j.cej.2012.12.102.

Hethnawi, A.; Nassar, N.N.; Manasrah, A.D.; Vitale, G. (2017). Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chemical Engineering Journal, 320, 389–404. https://doi.org/10.1016/j.cej.2017.03.057.

Rauf, M.A.; Salman Ashraf, S. (2012). Survey of recent trends in biochemically assisted degradation of dyes. Chemical Engineering Journal, 209, 520–530. https://doi.org/10.1016/j.cej.2012.08.015.

Cotillas, S.; Llanos, J.; Cañizares, P.; Clematis, D.; Cerisola, G.; Rodrigo, M.A.; Panizza, M. (2018). Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochimica Acta, 263, 1–7. https://doi.org/10.1016/j.electacta.2018.01.052.

Gao, Y.; Yang, B.; Wang, Q. (2018). Biodegradation and Decolorization of Dye Wastewater: A Review. IOP Conference Series: Earth and Environmental Science, 178, 12013. https://doi.org/10.1088/1755-1315/178/1/012013.

Tripathi, A.; Srivastava, S.K. (2011). Ecofriendly treatment of azo dyes: biodecolorization using bacterial strains. International Journal of Bioscience, Biochemistry and Bioinformatics, 1, 37.

Ali, H. (2010). Biodegradation of Synthetic Dyes—A Review. Water, Air, & Soil Pollution, 213, 251–273. https://doi.org/10.1007/s11270-010-0382-4.

Hassan, M.M.; Carr, C.M. (2018). A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere, 209, 201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043.

Imran, M.; Crowley, D.E.; Khalid, A.; Hussain, S.; Mumtaz, M.W.; Arshad, M. (2015). Microbial biotechnology for decolorization of textile wastewaters. Reviews in Environmental Science and Bio/Technology, 14, 73–92. https://doi.org/10.1007/s11157-014-9344-4.

Sandhya, S. (2010). Biodegradation of Azo Dyes Under Anaerobic Condition: Role of Azoreductase. In Biodegradation of Azo Dyes; Atacag Erkurt, H., Ed.; Springer: Berlin Heidelberg, Germany, Volume 9, pp. 39–57. https://doi.org/10.1007/698_2009_43.

Newman, M.C. (2019). Fundamentals of ecotoxicology: the science of pollution. Routledge: Oxfordshire, United Kingdom.

Rehman, K.; Shahzad, T.; Sahar, A.; Hussain, S.; Mahmood, F., Siddique, M.H.; Siddique, M.A.; Rashid, M.I. (2018). Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling. PeerJ - Life and Environment, 6, e4802.

Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13. https://doi.org/10.1016/j.desal.2011.07.019.

Tang, K.H.D. (2020). A Case Study Of The Environmental Impact Assessment Legislations In Sarawak, Malaysia. Asia Pacific Journal of Energy and Environment, 7, 47–54. https://doi.org/10.18034/apjee.v7i1.273.

Textile Industry Wastewater Discharge Quality Standards: Literature Review. (assessed on 1 Marchn 2022) Available online: https://wastewater.sustainabilityconsortium.org/downloads/ textile-industry-wastewater-discharge-quality-standards/.

Wang, L.; Ding, X.; Wu, X. (2013). Blue and grey water footprint of textile industry in China. Water Science and Technology, 68, 2485–2491. https://doi.org/10.2166/wst.2013.532.

Tang, L.; Yu, J.; Pang, Y.; Zeng, G.; Deng, Y., Wang, J.; Ren, X.; Ye, S.; Peng, B.; Feng, H. (2018). Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, 160–169. https://doi.org/10.1016/j.cej.2017.11.048.

Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090.

Tang, K.H.D.; Angela, J. (2019). Phytoremediation of crude oil-contaminated soil with local plant species. IOP Conference Series: Materials Science and Engineering, 495, 12054. https://doi.org/10.1088/1757-899x/495/1/012054.

Tang, K.H.D.; Kristanti, R.A. (2022). Bioremediation of perfluorochemicals: current state and the way forward. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-022-02694-z.

Choong, W.S.; Hadibarata, T.; Yuniarto, A.; Tang, K.H.D.; Abdullah, F., Syafrudin, M.; Al Farraj, D.A.; Al-Mohaimeed, A.M. (2021). Characterization of microplastics in the water and sediment of Baram River estuary, Borneo Island. Marine Pollution Bulletin, 172, 112880. https://doi.org/10.1016/j.marpolbul.2021.112880.

Tang, K.H.D. (2021). Interactions of Microplastics with Persistent Organic Pollutants and the Ecotoxicological Effects: A Review. Tropical Aquatic and Soil Pollution, 1(1), 24–34. https://doi.org/10.53623/tasp.v1i1.11.

Tang, K.H.D.; Awa, S.H.; Hadibarata, T. (2020). Phytoremediation of Copper-Contaminated Water with Pistia stratiotes in Surface and Distilled Water. Water, Air, & Soil Pollution, 231, 573. https://doi.org/10.1007/s11270-020-04937-9.

Kalyani, D.C.; Telke, A.A.; Dhanve, R.S.; Jadhav, J.P. (2009). Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. Journal of Hazardous Materials, 163, 735–742. https://doi.org/10.1016/j.jhazmat.2008.07.020.

Carvalho, M.C.; Pereira, C.; Gonçalves, I.C.; Pinheiro, H.M.; Santos, A.R.; Lopes, A.; Ferra, M.I. (2008). Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines. International Biodeterioration & Biodegradation, 62, 96–103. https://doi.org/10.1016/j.ibiod.2007.12.008.

Olukanni, O.D.; Osuntoki, A.A.; Gbenle, G.O. (2009). Decolourization of azo dyes by a strain of Micrococcus isolated from a refuse dump soil. Biotechnology, 8, 442–448. https://doi.org/10.3923/biotech.2009.442.448.

Ayed, L.; Mahdhi, A.; Cheref, A.; Bakhrouf, A. (2011). Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity and metabolites characterization. Desalination, 274, 272–277. https://doi.org/10.1016/j.desal.2011.02.024.

Bhattacharya, A.; Goyal, N.; Gupta, A. (2017). Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment. Extremophiles, 21, 479–490. https://doi.org/10.1007/s00792-017-0918-2.

Sari, I.P.; Simarani, K. (2019). Comparative static and shaking culture of metabolite derived from methyl red degradation by Lysinibacillus fusiformis strain W1B6. Royal Society Open Science, 6, 190152.

Pan, H.; Feng, J.; Cerniglia, C.E.; Chen, H. (2011). Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus. Journal of Industrial Microbiology and Biotechnology, 38, 1729–1738. https://doi.org/10.1007/s10295-011-0962-3.

Singh, R.P.; Singh, P.K.; Singh, R.L. (2014). Bacterial Decolorization of Textile Azo Dye Acid Orange by Staphylococcus hominis RMLRT03. Toxicology International, 21, 160–166. https://doi.org/10.4103/0971-6580.139797.

Tripathi, A.; Srivastava, S.K. (2011). Biodecolorization of Azo dye, Acid Orange 10, using different bacterial strains. Proceedings of 2nd International Conferences on Environmental Science and Technology, 6, V2-253.

Shah, B.; Jain, K.; Jiyani, H.; Mohan, V.; Madamwar, D. (2016). Microaerophilic Symmetric Reductive Cleavage of Reactive Azo Dye—Remazole Brilliant Violet 5R by Consortium VIE6: Community Synergism. Applied Biochemistry and Biotechnology, 180, 1029–1042. https://doi.org/10.1007/s12010-016-2150-4.

Waghmode, T.R.; Kurade, M.B.; Govindwar, S.P. (2011). Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360. International Biodeterioration & Biodegradation, 65, 479–486. https://doi.org/10.1016/j.ibiod.2011.01.010.

Meerbergen, K.; Willems, K.A.; Dewil, R.; Van Impe, J.; Appels, L.; Lievens, B. (2018). Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. Journal of Bioscience and Bioengineering, 125, 448–456. https://doi.org/10.1016/j.jbiosc.2017.11.008.

Kadam, A.A.; Telke, A.A.; Jagtap, S.S.; Govindwar, S.P. (2011). Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation. Journal of Hazardous Materials, 189, 486–494. https://doi.org/10.1016/j.jhazmat.2011.02.066.

Hai, F.I.; Yamamoto, K.; Nakajima, F.; Fukushi, K. (2008). Removal of structurally different dyes in submerged membrane fungi reactor—Biosorption/PAC-adsorption, membrane retention and biodegradation. Journal of Membrane Science, 325, 395–403. https://doi.org/10.1016/j.memsci.2008.08.006.

Gao, T.; Qin, D.; Zuo, S.; Peng, Y.; Xu, J.; Yu, B.; Song, H.; Dong, J. (2020). Decolorization and detoxification of triphenylmethane dyes by isolated endophytic fungus, Bjerkandera adusta SWUSI4 under non-nutritive conditions. Bioresources and Bioprocessing, 7, 53. https://doi.org/10.1186/s40643-020-00340-8.

Kolekar, Y.M.; Kodam, K.M. (2012). Decolorization of textile dyes by Alishewanella sp. KMK6. Applied Microbiology and Biotechnology, 95, 521–529. https://doi.org/10.1007/s00253-011-3698-0.

Oturkar, C.C.; Patole, M.S.; Gawai, K.R; Madamwar, D. (2013). Enzyme based cleavage strategy of Bacillus lentus BI377 in response to metabolism of azoic recalcitrant. Bioresource Technology, 130, 360–365. https://doi.org/10.1016/j.biortech.2012.12.019.

Guadie, A.; Gessesse, A.; Xia, S. (2018). Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated Rift Valley Soda lake. Chemosphere, 206, 59–69. https://doi.org/10.1016/j.chemosphere.2018.04.134.

Mishra, B.; Varjani, S.; Kumar, G.; Awasthi, M.K.; Awasthi, S.K., Sindhu, R.; Binod, P.; Rene, E.R.; Zhang, Z. (2020). Microbial approaches for remediation of pollutants: Innovations, future outlook, and challenges. Energy & Environment, 32, 1029–1058. https://doi.org/10.1177/0958305X19896781.

El-Sheekh, M.M.; Gharieb, M.M.; Abou-El-Souod, G.W. (2009). Biodegradation of dyes by some green algae and cyanobacteria. International Biodeterioration & Biodegradation, 63, 699–704. https://doi.org/10.1016/j.ibiod.2009.04.010.

Ishchi, T.; Sibi, G. (2020). Azo dye degradation by Chlorella vulgaris: optimization and kinetics. International Journal of Biological Chemistry, 14(1), 1–7. https://doi.org/10.3923/ijbc.2020.1.7.

Hadibarata, T.; Yusoff, A.R.M.; Kristanti, R.A. (2012). Acceleration of Anthraquinone-Type Dye Removal by White-Rot Fungus Under Optimized Environmental Conditions. Water, Air, & Soil Pollution, 223(8), 4669–4677. https://doi.org/10.1007/s11270-012-1177-6.

Deivasigamani, C.; Das, N. (2011). Biodegradation of Basic Violet 3 by Candida krusei isolated from textile wastewater. Biodegradation, 22, 1169–1180. https://doi.org/10.1007/s10532-011-9472-2.

Al-Tohamy, R.; Sun, J.; Fareed, M.F.; Kenawy, E.-R.; Ali, S.S. (2020). Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Scientific Reports, 10, 12370. https://doi.org/10.1038/s41598-020-69304-4.

Xiao, X.; Xu, C.C.; Wu, Y.M.; Cai, P.J.; Li, W.W.; Du, D.L.; Yu, H.Q. (2012). Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. Bioresource Technology, 110, 86–90. https://doi.org/10.1016/j.biortech.2012.01.099.

Prasad, A.S.A.; Rao, K.V.B. (2014). Aerobic biodegradation of azo dye Acid Black-24 by Bacillus halodurans. Journal of Environmental Biology, 35(3), 549. http://doi.org/10.1007/s40010-014-0163-3.

Jasińska, A.; Soboń, A.; Góralczyk-Bińkowska, A.; Długoński, J. (2019). Analysis of decolorization potential of Myrothecium roridum in the light of its secretome and toxicological studies. Environmental Science and Pollution Research, 26(25), 26313–26323. https://doi.org/10.1007/s11356-019-05324-6.

Ashrafi, S.D.; Rezaei, S.; Forootanfar, H.; Mahvi, A.H.; Faramarzi, M.A. (2013). The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. International Biodeterioration & Biodegradation, 85, 173–181. https://doi.org/10.1016/j.ibiod.2013.07.006.

Das, P.; Banerjee, P.; Zaman, A.; Bhattacharya, P. (2016). Biodegradation of two Azo dyes using Dietzia sp. PD1: process optimization using Response Surface Methodology and Artificial Neural Network. Desalination and Water Treatment, 57, 7293–7301. https://doi.org/10.1080/19443994.2015.1013993.

Neifar, M.; Chouchane, H.; Mahjoubi, M.; Jaouani, A.; Cherif, A. (2016). Pseudomonas extremorientalis BU118: a new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech, 6, 107. https://doi.org/10.1007/s13205-016-0425-7.

Verma, A.; Shirkot, P. (2014). Purification and Characterization of Thermostable Laccase from Thermophilic Geobacillus thermocatenulatus MS5 and its applications in removal of Textile Dyes. Scholars Academic Journal of Biosciences, 2, 479–485.

Rajhans, G.; Sen, S.K.; Barik, A.; Raut, S. (2020). Elucidation of fungal dye-decolourizing peroxidase (DyP) and ligninolytic enzyme activities in decolourization and mineralization of azo dyes. Journal of Applied Microbiology, 129, 1633–1643. https://doi.org/https://doi.org/10.1111/jam.14731.

Haq, I.; Raj, A.; Markandeya. (2018). Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere, 196, 58–68. https://doi.org/10.1016/j.chemosphere.2017.12.153.

Ajaz, M.; Rehman, A.; Khan, Z.; Nisar, M.A.; Hussain, S. (2019). Degradation of azo dyes by Alcaligenes aquatilis 3c and its potential use in the wastewater treatment. AMB Express, 9, 64. https://doi.org/10.1186/s13568-019-0788-3.

Franciscon, E.; Grossman, M.J.; Paschoal, J.A.R.; Reyes, F.G.R.; Durrant, L.R. (2012). Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus, 1, 37. https://doi.org/10.1186/2193-1801-1-37.

El-Sheekh, M.M.; Abou-El-Souod, G.W.; El Asrag, H.A. (2018). Biodegradation of Some Dyes by The Green Alga Chlorella vulgaris and the Cyanobacterium Aphanocapsa elachista . Egyptian Journal of Botany, 58, 311–320. https://doi.org/10.21608/ejbo.2018.2675.1145.

Tian, F.; Guo, G.; Zhang, C.; Yang, F.; Hu, Z.; Liu, C.; Wang, S.W. (2019). Isolation, cloning and characterization of an azoreductase and the effect of salinity on its expression in a halophilic bacterium. International Journal of Biological Macromolecules, 123, 1062–1069. https://doi.org/10.1016/j.ijbiomac.2018.11.175.

Pratiwi, D.; Prasetyo, D.J.; Poeloengasih, C.D. (2019). Adsorption of Methylene Blue dye using Marine algae Ulva lactuca. IOP Conference Series: Earth and Environmental Science, 251, 12012. https://doi.org/10.1088/1755-1315/251/1/012012.

Vats, A.; Mishra, S. (2017). Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16. Environmental Science and Pollution Research, 24, 11650–11662. https://doi.org/10.1007/s11356-017-8802-2.

Bankole, P.O.; Adekunle, A.A.; Obidi, O.F.; Chandanshive, V.V.; Govindwar, S.P. (2018). Biodegradation and detoxification of Scarlet RR dye by a newly isolated filamentous fungus, Peyronellaea prosopidis. Sustainable Environment Research, 28, 214–222. https://doi.org/10.1016/j.serj.2018.03.001.

Erden, E.; Kaymaz, Y.; Pazarlioglu, N.K. (2011). Biosorption kinetics of a direct azo dye Sirius Blue K-CFN by Trametes versicolor. Electronic Journal of Biotechnology, 14(2), 3. http://doi.org/10.2225/vol14-issue2-fulltext-8.

Ambrósio, S.T.; Vilar Júnior, J.C.; Da Silva, C.A.A.; Okada, K.; Nascimento, A.E.;, Longo, R.L.; Campos-Takaki, G.M. (2012). A Biosorption Isotherm Model for the Removal of Reactive Azo Dyes by Inactivated Mycelia of Cunninghamella elegans UCP542. Molecules, 17, 452-462. https://doi.org/10.3390/molecules17010452.

Lee, K.K.; Tang, K.H.D. (2020). Agaricales (Gilled Mushrooms) as Biosorbents of Synthetic Dye. Malaysian Journal of Medicine and Health Sciences, 16, 10–17.

Krishnamoorthy, R.; Jose, P.A.; Ranjith, M.; Anandham, R.; Suganya, K.; et al. (2018). Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3. Journal of Environmental Chemical Engineering, 6, 588–595. https://doi.org/10.1016/j.jece.2017.12.035.

Safarik, I.; Rego, L.F.T.; Borovska, M.; Mosiniewicz-Szablewska, E.; Weyda, F., Safarikova, M. (2007). New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme and Microbial Technology, 40, 1551–1556. https://doi.org/10.1016/j.enzmictec.2006.10.034.

Dixit, S.; Garg, S. (2019). Development of an efficient recombinant bacterium and its application in the degradation of environmentally hazardous azo dyes. International Journal of Environmental Science and Technology, 16, 7137–7146. https://doi.org/10.1007/s13762-018-2054-7.

Sun, J.; Li, Y.; Hu, Y.; Hou, B.; Xu, Q.; Zhang, Y.; Li, S. (2012). Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Biotechnology Letters, 34, 2023–2029. https://doi.org/10.1007/s10529-012-1002-8.

Fang, Z.-M.; Li, T.-L.; Chang, F.; Zhou, P.; Fang, W.; Hong, Y.Z.; Zhang, X.C.; Peng, H.; Xiao, Y.Z. (2012). A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresource Technology, 111, 36–41. hhttps://doi.org/10.1016/j.biortech.2012.01.172.

Eslami, M.; Amoozegar, M.A.; Asad, S. (2016). Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata. International Journal of Biological Macromolecules, 85, 111–116. https://doi.org/10.1016/j.ijbiomac.2015.12.065.

Morsy, S.A.G.Z.; Ahmad Tajudin, A.; Ali, M.S.M.; Shariff, F.M. (2020). Current Development in Decolorization of Synthetic Dyes by Immobilized Laccases. Frontiers in Microbiology, 11, 572309. https://doi.org/10.3389/fmicb.2020.572309.

Al-Fawwaz, A.T.; Abdullah, M. (2016). Decolorization of methylene blue and malachite green by immobilized Desmodesmus sp. isolated from North Jordan. International Journal of Environmental Science and Development, 7, 95. http://doi.org/10.7763/IJESD.2016.V7.748.

Alam, M.Z.; Khan, M.J.H.; Kabbashi, N.A.; Sayem, S.M.A. (2018). Development of an Effective Biosorbent by Fungal Immobilization Technique for Removal of Dyes. Waste and Biomass Valorization, 9, 681–690. https://doi.org/10.1007/s12649-016-9821-9.

Nguyen, T.A.; Fu, C.-C.; Juang, R.-S. (2016). Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads. Chemical Engineering Journal, 304, 313–324. https://doi.org/10.1016/j.cej.2016.06.102.

Ma, H.-F.; Meng, G.; Cui, B.-K.; Si, J.; Dai, Y.-C. (2018). Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes: Laccase immobilization and characterization. Chemical Engineering Research and Design, 132, 664–676. https://doi.org/10.1016/j.cherd.2018.02.008.

Zhang, W.; Yang, Q.; Luo, Q.; Shi, L.; Meng, S. (2020). Laccase-Carbon nanotube nanocomposites for enhancing dyes removal. Journal of Cleaner Production, 242, 118425. https://doi.org/10.1016/j.jclepro.2019.118425.

Tang, K.H.D.; Law, Y.W.E. (2019). Phytoremediation of soil contaminated with crude oil using Mucuna Bracteata. Research in Ecology, 1, 20-30. http://doi.org/10.30564/re.v1i1.739.

About this article

SUBMITTED: 16 March 2022
ACCEPTED: 15 April 2022
PUBLISHED: 16 April 2022
SUBMITTED to ACCEPTED: 30 days
DOI: https://doi.org/10.53623/tasp.v2i1.72

Cite this article
Tang, K. H. D., Darwish, N. M. ., Alkahtani, A. M. ., AbdelGawwad, M. R. ., & Karácsony, P. . (2022). Biological Removal of Dyes from Wastewater: A Review of Its Efficiency and Advances. Tropical Aquatic and Soil Pollution, 2(1), 59–75. https://doi.org/10.53623/tasp.v2i1.72
Keywords
Accessed
2565
Citations
0
Share this article