Rubiyatno, Teh, Z.C.; Lestari, D.V.; Yulisa, A.; Musa, M.; Chen, T.-W.; Darwish, N.M.; AlMunqedhi, B.M.; Hadibarata, T. (2022). Tolerance of earthworms in soil contaminated with polycyclic aromatic hydrocarbon. Industrial and Domestic Waste Management, 2, 9–16. https://doi.org/10.53623/idwm.v2i1.62.
Liew, Z.R.; Monir, M.U.; Kristanti, R.A. (2021). Scenario of Municipal Waste Management in Malaysia. Industrial and Domestic Waste Management, 1, 41–47. https://doi.org/10.53623/idwm.v1i1.50.
Tang, Y.Y.; Tang, K.H.D.; Maharjan, A. K.; Abdul Aziz, A.; Bunrith, S. (2021). Malaysia Moving Towards a Sustainability Municipal Waste Management. Industrial and Domestic Waste Management, 1, 26–40. https://doi.org/10.53623/idwm.v1i1.51.
Kumar, B.; Verma, V.K.; Singh, S.K.; Kumar, S.; Sharma, C.S.; Akolkar, A.B. (2014). Polychlorinated biphenyls in residential soils and their health risk and hazard in an industrial city in India. Journal of Public Health Research, 4, 68-74. https://doi.org/10.4081/jphr.2014.252.
Lasota, J.; Błońska, E. (2018). Polycyclic aromatic hydrocarbons content in contaminated forest soils with dfferent humus types. Water, Air, and Soil Pollution, 229, 1-8. https://doi.org/10.1007/s11270-018-3857-3.
Bierkens, J.; Geerts, L. (2014). Environmental hazard and risk characterisation of petroleum substances: A guided “walking tour” of petroleum hydrocarbons. Environment International, 66, 182–193. https://doi.org/10.1016/j.envint.2014.01.030.
Hentati, O.; Lachhab, R.; Ayadi, M.; Ksibi, M. (2013). Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environmental Monitoring and Assessment, 185, 2989–2998. https://doi.org/10.1007/s10661-012-2766-y.
Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60-72. https://dx.doi.org/10.2478%2Fintox-2014-0009.
Stegemeier, G.L.; Vinegar, H.J. (2001). Thermal conduction heating for in-situ thermal desorption of soils. CRC Press: Boca Raton, United States.
Petarca, L.; Cioni, B. (2011). Petroleum products removal from contaminated soils using microwave heating. Chemical Engineering Transactions, 24, 1033-1038. http://dx.doi.org/10.3303/CET1124173.
Vidonish, J. E.; Zygourakis K.; Masiello, C.A.; Sabadell, G.; Alvarez, P.J. (2016). Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering, 2, 426-437. https://doi.org/10.1016/J.ENG.2016.04.005.
dela Cruz, A.L.; Cook, R.L.; Lomnicki, S.M.; Dellinger, B. (2012). Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals. Environmental Science and Technology, 46, 5971–5978. https://doi.org/10.1021/es300362k.
Falciglia, P.P.; Giustra, M.G.; Vagliasindi, F.G. (2011). Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. Journal of Hazardous Materials, 195, 392-400. https://doi.org/10.1016/j.jhazmat.2010.09.046.
Liu, J.; Chen, T.; Qi, Z.; Yan, J., Buekens, A.; Li, X. (2014). Thermal desorption of PCBs from contaminated soil using nano zerovalent iron. Environmental Science and Pollution Research, 21, 12739–12746. https://doi.org/10.1007/s11356-014-3226-8.
Bulmău, C.; Mărculescu, C.; Lu, S.; Qi, Z. (2014). Analysis of thermal processing applied to contaminated soil for organic pollutants removal. Journal of Geochemical Exploration, 147, 298–305. http://dx.doi.org/10.1016/j.gexplo.2014.08.005.
Ma, F.; Peng, C.; Hou, D.; Wu, B.; Zhang, Q.; Li, F.; Gu, Q. (2015). Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil. Journal of Hazardous Materials, 300, 546–552. https://doi.org/10.1016/j.jhazmat.2015.07.055.
Merino, J.; Bucala, V. (2007). Effect of temperature on the release of hexadecane from soil by thermal treatment. Journal of Hazardous Materials, 143, 455–461. https://doi.org/10.1016/j.jhazmat.2006.09.050.
Lundin, L.; Aurell, J.; Marklund, S. (2011). The behavior of PCDD and PCDF during thermal treatment of waste incineration ash. Chemosphere, 84, 305-310. https://doi.org/10.1016/j.chemosphere.2011.04.014.
Acosta, J.A.; Faz, A.; Martínez-Martínez, S.; Zornoza, R.; Carmona, D.M.; Kabas, S. (2011). Multivariate statistical and GIS-based approach to evaluate heavy metals behavior inmine sites for future reclamation. Journal of Geochemical Exploration, 109, 8-17. https://doi.org/10.1016/j.gexplo.2011.01.004.
O'Brien, P.L.; DeSutter, T.M.; Casey, F.X.; Khan, E.; Wick, A.F. (2018). Thermal remediation alters soil properties – a review. Journal of Environmental Management, 206, 826-835. https://doi.org/10.1016/j.jenvman.2017.11.052.
Zhao, Z.; Ni, M.; Li, X.; Buekens, A.; Yan, J. (2017). Combined mechanochemical and thermal treatment of PCBs contaminated soil. Royal Society of Chemistry, 7, 21180-21186. https://doi.org/10.1039/C7RA01493G.
Aresta, M.; Dibenedetto, A.; Fragale, C.; Giannoccaro, P.; Pastore, C.; Zammiello, D.; Ferragina, C. (2008). Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere, 70, 1052–1058. https://doi.org/10.1016/j.chemosphere.2007.07.074.
Zhan, L.; Xia, Z.; Lu, Z. (2022). Thermal desorption behavior of fluoroquinolones in contaminated soil of livestock and poultry breeding. Environmental Research, 211, 113101. https://doi.org/10.1016/j.envres.2022.113101.
Lee, J.K.; Park, D.; Kim, B.U.; Dong, J.I.; Lee, S. (1998). Remediation of petroleum-contaminated soils by fluidized thermal desorption. Waste Management, 17, 503-507. https://doi.org/10.1016/S0956-053X(98)00135-4.
Halvorsen, I. J.; Skogestad, S. (2001). Distillation Theory. Trondheim: Norwegian University of Science and Technology.
Mechati, F.; Roth, E.; Renault, V.; Risoul, V.; Trouve, G.; Gilot, P. (2004). Pilot scale and theoretical study of thermal remediation of soils. Environmental Engineering Science, 21, 361-370. http://dx.doi.org/10.1089/109287504323067003.
Liu, J.; Qi, Z.; Li, X.; Chen, T.; Buekens, A.; Yan, J.; Ni, M. (2015). Effect of oxygen content on the thermal desorption of polychlorinated biphenyl-contaminated soil. Environmental Science and Pollution Research, 22, 12289–12297. https://doi.org/10.1007/s11356-015-4478-7.
Zhang, P.; Gao, Y.Z.; Kong, H. L. (2012). Thermal desorption of nitrobenzene in contaminated soil. Soils, 44, 801-806. http://dx.doi.org/10.4028/www.scientific.net/AMR.414.150.
Smith, M.T.; Berruti, F.; Mehrotra, A.K. (2001). Thermal desorption treatment of contaminated soils in a novel batch thermal reactor. Industrial & Engineering Chemistry Research, 40, 5421-5430. https://doi.org/10.1021/ie0100333.
Overview of thermal desorption technology. (Accessed on 10 February 2022) Available online: https://clu-in.org/download/contaminantfocus/dnapl/Treatment_Technologies/NFESC-CR-98-008-ENV.pdf.
Chang, T.C.; Yen, J.H. (2006). On-site mercury-contaminated soils remediation by using thermal desorption technology. Journal of Hazardous Materials, 128, 208-217. https://doi.org/10.1016/j.jhazmat.2005.07.053.
Li, J.; He, C.; Cao, X.; Sui, H.; Li, X.; He, L. (2021). Low temperature thermal desorption-chemical oxidation hybrid process for the remediation of organic contaminated model soil: A case study. Journal of Contaminant Hydrology, 243, 193908. https://doi.org/10.1016/j.jconhyd.2021.103908
Lu, G.; Yue, C.; Liu, S.; Guo, M.; Zhang, M. (2019). Na2s leaching assissting thermal desorpton for thoroughly and mildly remediating severely Hg-contaminated soil. Journal of Chemical Engineering of Japan, 52, 805-810. https://doi.org/10.1252/jcej.19we037.
Li, W.B.; Wang, J.X.; Gong, H. (2009). Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 148, 81-87. https://doi.org/10.1016/j.cattod.2009.03.007.
Liu, J.; Zhang, H.; Yao, Z.; Li, X.; Tang, J. (2019). Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln. Chemosphere, 220, 1041-1046. https://doi.org/10.1016/j.chemosphere.2019.01.031.
Xu, Z.; Zhang, Y.; Di, H.; Shen, T. (2019). Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines. Applied Energy, 251, 113329. https://doi.org/10.1016/j.ifacol.2019.09.098.
Li, D.; Zhang, Y.; Quan, X.; Zhao, Y. (2009). Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. Journal of Environmental Sciences, 21, 1290-1295. https://doi.org/10.1016/s1001-0742(08)62417-1.
Khan, F.I.; Ghoshal, A.K. (2000). Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 13, 527-545. https://doi.org/10.1016/S0950-4230(00)00007-3.
He, L.; Fan, Y.; Bellettre, J.; Yue, J.; Luo, L. (2020). A review on catalytic methane combustion at low temperature: Catalyst, mechanisms, reaction conditions and reactor designs. Renewable and Sustainable Energy Review, 119, 109589. https://doi.org/10.1016/j.rser.2019.109589.
Yoshikawa, M.; Zhang, M.; Toyota, K. (2017). Biodegradation of volatile organic compounds and their effects on biodegradability under co-existing conditions. Microbes and Environment, 32, 188-200. https://doi.org/10.1264/jsme2.ME16188.
Hadibarata, T.; Yusoff, A.R.M.; Kristanti, R.A. (2012). Acceleration of anthraquinone-type dye removal by white-rot fungus under optimized environmental conditions. Water, Air and Soil Pollution, 223, 4669-4677. https://doi.org/10.1007/s11270-012-1177-6.
Hadibarata, T.; Kristanti, R.A. (2012). Effect of environmental factors in the decolorization of remazol brilliant blue R by Polyporus sp. S133. Journal of Chilean Chemical Society, 57, 1095-1098. https://doi.org/10.4067/S0717-97072012000200007.
Sang, Y.; Yu, W.; He, L.; Wang, Z.; Ma, F.; Wentao J., Qingbao, G. (2021). Sustainable remediation of lube oil contaminated soil by low temperature indirect thermal desorption: Removal behaviours of contaminants, physicochemical properties change and microbial community recolonization in soils. Environmental Pollution, 287, 117599. https://doi.org/10.1016/j.envpol.2021.117599.
SUBMITTED: 10 March 2022
ACCEPTED: 14 April 2022
PUBLISHED:
16 April 2022
SUBMITTED to ACCEPTED: 36 days
DOI:
https://doi.org/10.53623/tasp.v2i1.68