Skip to main content

A Review on Thermal Desorption Treatment for Soil Contamination

Author(s): Risky Ayu Kristanti 1 , Wilawan Khanitchaidecha 2 , Gaurav Taludar 3 , Peter Karácsony 4 , Linh Thi Thuy Cao 5 , Tse-Wei Chen 6 , Noura M. Darwish 7 , Bandar M. AlMunqedhi 8
Author(s) information:
1 National Research and Innovation Agency
2 Naresuan University
3 IITGuwahati, India
4 University Research and Innovation Center, Óbuda University, Budapest, Hungaria
5 5Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima , Japan
6 Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
7 College of Sciece, Ai Shams University, Cairo, Egypt
8 Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia

Corresponding author

Soil contamination is a major issue that must be prioritized, as food safety is mostly determined by soil quality. Soil quality has deteriorated significantly across the world with the continued expansion of industrial growth, urbanization, and agricultural activities. Soil contamination has become a growing issue and a barrier that must be addressed if we are concerned about re-establishing a healthy ecosystem. The activity is mostly driven by human activities, which include the use of pesticides, chlorinated organic pollutants, herbicides, inorganic fertilizers, industrial pollution, solid waste, and urban activities. While many methods have been developed to remediate significant pollutants generated by these activities, their degree of application may be constrained or inappropriate for a specific location. Parameters such as treatment duration, safety, and efficacy of soil/pollutant treatment all play a part in selecting the best appropriate technique. These technologies have been classified into three broad categories: physical, chemical, and bioremediation. This review shows and talks about thermal desorption (TD), which is a common way to clean up polluted soil.

Rubiyatno, Teh, Z.C.; Lestari, D.V.; Yulisa, A.; Musa, M.; Chen, T.-W.; Darwish, N.M.; AlMunqedhi, B.M.; Hadibarata, T. (2022). Tolerance of earthworms in soil contaminated with polycyclic aromatic hydrocarbon. Industrial and Domestic Waste Management, 2, 9–16. https://doi.org/10.53623/idwm.v2i1.62.

Liew, Z.R.; Monir, M.U.; Kristanti, R.A. (2021). Scenario of Municipal Waste Management in Malaysia. Industrial and Domestic Waste Management, 1, 41–47. https://doi.org/10.53623/idwm.v1i1.50.

Tang, Y.Y.; Tang, K.H.D.; Maharjan, A. K.; Abdul Aziz, A.; Bunrith, S. (2021). Malaysia Moving Towards a Sustainability Municipal Waste Management. Industrial and Domestic Waste Management, 1, 26–40. https://doi.org/10.53623/idwm.v1i1.51.

Kumar, B.; Verma, V.K.; Singh, S.K.; Kumar, S.; Sharma, C.S.; Akolkar, A.B. (2014). Polychlorinated biphenyls in residential soils and their health risk and hazard in an industrial city in India. Journal of Public Health Research, 4, 68-74. https://doi.org/10.4081/jphr.2014.252.

Lasota, J.; Błońska, E. (2018). Polycyclic aromatic hydrocarbons content in contaminated forest soils with dfferent humus types. Water, Air, and Soil Pollution, 229, 1-8. https://doi.org/10.1007/s11270-018-3857-3.

Bierkens, J.; Geerts, L. (2014). Environmental hazard and risk characterisation of petroleum substances: A guided “walking tour” of petroleum hydrocarbons. Environment International, 66, 182–193. https://doi.org/10.1016/j.envint.2014.01.030.

Hentati, O.; Lachhab, R.; Ayadi, M.; Ksibi, M. (2013). Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environmental Monitoring and Assessment, 185, 2989–2998. https://doi.org/10.1007/s10661-012-2766-y.

Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60-72. https://dx.doi.org/10.2478%2Fintox-2014-0009.

Stegemeier, G.L.; Vinegar, H.J. (2001). Thermal conduction heating for in-situ thermal desorption of soils. CRC Press: Boca Raton, United States.

Petarca, L.; Cioni, B. (2011). Petroleum products removal from contaminated soils using microwave heating. Chemical Engineering Transactions, 24, 1033-1038. http://dx.doi.org/10.3303/CET1124173.

Vidonish, J. E.; Zygourakis K.; Masiello, C.A.; Sabadell, G.; Alvarez, P.J. (2016). Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering, 2, 426-437. https://doi.org/10.1016/J.ENG.2016.04.005.

dela Cruz, A.L.; Cook, R.L.; Lomnicki, S.M.; Dellinger, B. (2012). Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals. Environmental Science and Technology, 46, 5971–5978. https://doi.org/10.1021/es300362k.

Falciglia, P.P.; Giustra, M.G.; Vagliasindi, F.G. (2011). Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. Journal of Hazardous Materials, 195, 392-400. https://doi.org/10.1016/j.jhazmat.2010.09.046.

Liu, J.; Chen, T.; Qi, Z.; Yan, J., Buekens, A.; Li, X. (2014). Thermal desorption of PCBs from contaminated soil using nano zerovalent iron. Environmental Science and Pollution Research, 21, 12739–12746. https://doi.org/10.1007/s11356-014-3226-8.

Bulmău, C.; Mărculescu, C.; Lu, S.; Qi, Z. (2014). Analysis of thermal processing applied to contaminated soil for organic pollutants removal. Journal of Geochemical Exploration, 147, 298–305. http://dx.doi.org/10.1016/j.gexplo.2014.08.005.

Ma, F.; Peng, C.; Hou, D.; Wu, B.; Zhang, Q.; Li, F.; Gu, Q. (2015). Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil. Journal of Hazardous Materials, 300, 546–552. https://doi.org/10.1016/j.jhazmat.2015.07.055.

Merino, J.; Bucala, V. (2007). Effect of temperature on the release of hexadecane from soil by thermal treatment. Journal of Hazardous Materials, 143, 455–461. https://doi.org/10.1016/j.jhazmat.2006.09.050.

Lundin, L.; Aurell, J.; Marklund, S. (2011). The behavior of PCDD and PCDF during thermal treatment of waste incineration ash. Chemosphere, 84, 305-310. https://doi.org/10.1016/j.chemosphere.2011.04.014.

Acosta, J.A.; Faz, A.; Martínez-Martínez, S.; Zornoza, R.; Carmona, D.M.; Kabas, S. (2011). Multivariate statistical and GIS-based approach to evaluate heavy metals behavior inmine sites for future reclamation. Journal of Geochemical Exploration, 109, 8-17. https://doi.org/10.1016/j.gexplo.2011.01.004.

O'Brien, P.L.; DeSutter, T.M.; Casey, F.X.; Khan, E.; Wick, A.F. (2018). Thermal remediation alters soil properties – a review. Journal of Environmental Management, 206, 826-835. https://doi.org/10.1016/j.jenvman.2017.11.052.

Zhao, Z.; Ni, M.; Li, X.; Buekens, A.; Yan, J. (2017). Combined mechanochemical and thermal treatment of PCBs contaminated soil. Royal Society of Chemistry, 7, 21180-21186. https://doi.org/10.1039/C7RA01493G.

Aresta, M.; Dibenedetto, A.; Fragale, C.; Giannoccaro, P.; Pastore, C.; Zammiello, D.; Ferragina, C. (2008). Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere, 70, 1052–1058. https://doi.org/10.1016/j.chemosphere.2007.07.074.

Zhan, L.; Xia, Z.; Lu, Z. (2022). Thermal desorption behavior of fluoroquinolones in contaminated soil of livestock and poultry breeding. Environmental Research, 211, 113101. https://doi.org/10.1016/j.envres.2022.113101.

Lee, J.K.; Park, D.; Kim, B.U.; Dong, J.I.; Lee, S. (1998). Remediation of petroleum-contaminated soils by fluidized thermal desorption. Waste Management, 17, 503-507. https://doi.org/10.1016/S0956-053X(98)00135-4.

Halvorsen, I. J.; Skogestad, S. (2001). Distillation Theory. Trondheim: Norwegian University of Science and Technology.

Mechati, F.; Roth, E.; Renault, V.; Risoul, V.; Trouve, G.; Gilot, P. (2004). Pilot scale and theoretical study of thermal remediation of soils. Environmental Engineering Science, 21, 361-370. http://dx.doi.org/10.1089/109287504323067003.

Liu, J.; Qi, Z.; Li, X.; Chen, T.; Buekens, A.; Yan, J.; Ni, M. (2015). Effect of oxygen content on the thermal desorption of polychlorinated biphenyl-contaminated soil. Environmental Science and Pollution Research, 22, 12289–12297. https://doi.org/10.1007/s11356-015-4478-7.

Zhang, P.; Gao, Y.Z.; Kong, H. L. (2012). Thermal desorption of nitrobenzene in contaminated soil. Soils, 44, 801-806. http://dx.doi.org/10.4028/www.scientific.net/AMR.414.150.

Smith, M.T.; Berruti, F.; Mehrotra, A.K. (2001). Thermal desorption treatment of contaminated soils in a novel batch thermal reactor. Industrial & Engineering Chemistry Research, 40, 5421-5430. https://doi.org/10.1021/ie0100333.

Overview of thermal desorption technology. (Accessed on 10 February 2022) Available online: https://clu-in.org/download/contaminantfocus/dnapl/Treatment_Technologies/NFESC-CR-98-008-ENV.pdf.

Chang, T.C.; Yen, J.H. (2006). On-site mercury-contaminated soils remediation by using thermal desorption technology. Journal of Hazardous Materials, 128, 208-217. https://doi.org/10.1016/j.jhazmat.2005.07.053.

Li, J.; He, C.; Cao, X.; Sui, H.; Li, X.; He, L. (2021). Low temperature thermal desorption-chemical oxidation hybrid process for the remediation of organic contaminated model soil: A case study. Journal of Contaminant Hydrology, 243, 193908. https://doi.org/10.1016/j.jconhyd.2021.103908

Lu, G.; Yue, C.; Liu, S.; Guo, M.; Zhang, M. (2019). Na2s leaching assissting thermal desorpton for thoroughly and mildly remediating severely Hg-contaminated soil. Journal of Chemical Engineering of Japan, 52, 805-810. https://doi.org/10.1252/jcej.19we037.

Li, W.B.; Wang, J.X.; Gong, H. (2009). Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 148, 81-87. https://doi.org/10.1016/j.cattod.2009.03.007.

Liu, J.; Zhang, H.; Yao, Z.; Li, X.; Tang, J. (2019). Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln. Chemosphere, 220, 1041-1046. https://doi.org/10.1016/j.chemosphere.2019.01.031.

Xu, Z.; Zhang, Y.; Di, H.; Shen, T. (2019). Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines. Applied Energy, 251, 113329. https://doi.org/10.1016/j.ifacol.2019.09.098.

Li, D.; Zhang, Y.; Quan, X.; Zhao, Y. (2009). Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. Journal of Environmental Sciences, 21, 1290-1295. https://doi.org/10.1016/s1001-0742(08)62417-1.

Khan, F.I.; Ghoshal, A.K. (2000). Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 13, 527-545. https://doi.org/10.1016/S0950-4230(00)00007-3.

He, L.; Fan, Y.; Bellettre, J.; Yue, J.; Luo, L. (2020). A review on catalytic methane combustion at low temperature: Catalyst, mechanisms, reaction conditions and reactor designs. Renewable and Sustainable Energy Review, 119, 109589. https://doi.org/10.1016/j.rser.2019.109589.

Yoshikawa, M.; Zhang, M.; Toyota, K. (2017). Biodegradation of volatile organic compounds and their effects on biodegradability under co-existing conditions. Microbes and Environment, 32, 188-200. https://doi.org/10.1264/jsme2.ME16188.

Hadibarata, T.; Yusoff, A.R.M.; Kristanti, R.A. (2012). Acceleration of anthraquinone-type dye removal by white-rot fungus under optimized environmental conditions. Water, Air and Soil Pollution, 223, 4669-4677. https://doi.org/10.1007/s11270-012-1177-6.

Hadibarata, T.; Kristanti, R.A. (2012). Effect of environmental factors in the decolorization of remazol brilliant blue R by Polyporus sp. S133. Journal of Chilean Chemical Society, 57, 1095-1098. https://doi.org/10.4067/S0717-97072012000200007.

Sang, Y.; Yu, W.; He, L.; Wang, Z.; Ma, F.; Wentao J., Qingbao, G. (2021). Sustainable remediation of lube oil contaminated soil by low temperature indirect thermal desorption: Removal behaviours of contaminants, physicochemical properties change and microbial community recolonization in soils. Environmental Pollution, 287, 117599. https://doi.org/10.1016/j.envpol.2021.117599.

About this article

SUBMITTED: 10 March 2022
ACCEPTED: 14 April 2022
PUBLISHED: 16 April 2022
SUBMITTED to ACCEPTED: 36 days
DOI: https://doi.org/10.53623/tasp.v2i1.68

Cite this article
Kristanti, R. A., Khanitchaidecha, W., Taludar, G. ., Karácsony, P. ., Cao, L. T. T. ., Chen, T.-W. ., Darwish, N. M. ., & AlMunqedhi, B. M. . (2022). A Review on Thermal Desorption Treatment for Soil Contamination . Tropical Aquatic and Soil Pollution, 2(1), 45–58. https://doi.org/10.53623/tasp.v2i1.68
Accessed
1999
Citations
0
Share this article