Skip to main content
Search for Articles:
Tropical Aquatic and Soil Pollution
Share

Open Access Review

Application of Carbon Nanotubes (CNTs) for Remediation of Emerging Pollutants - A Review

by Jia Hui Chung 1 , Nur Hasyimah 1 , Norelyza Hussein 2
1 Department of Civil & Construction Engineering, Faculty of Engineering & Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
2 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

SUBMITTED: 14 September 2021; ACCEPTED: 01 December 2021; PUBLISHED: 9 December 2021

Submission to final decision takes 77 days.


Get rights and content
Creative Commons Attribution 4.0 International License

Abstract

Abstract

Nanotechnology is currently an upward trend in diverse fields, and therefore, its application will be reviewed in this paper. One of the nanotechnologies which can be used in environmental remediation is carbon nanotube (CNT). Its excellent mechanical and chemical properties allow it to have better achievement in remediating a wide range of organic and inorganic pollutants. CNT can be categorized into two types: single-walled carbon nanotube and multi-walled carbon nanotube. Due to urbanization, various types of pollutants have been released into the environment in great amounts. For instance, estrogen is the hormone generated and released from animals and humans. However, the overconcentration of estrogen affects the physiology of biological life. Besides, pesticides are frequently used by farmers to increase the fertility of the land for agricultural purposes, while heavy metals are commonly found during anthropogenic activities. Long-term absorption of heavy metals into the body tissues will accumulate toxic effects, leading to body system dysfunction. Hence, CNT technologies, including adsorption, membrane filtration, disinfection, hybrid catalysis, and sensing and monitoring, can be applied to remediate these pollutants. However, the application of nanotechnology and CNT faces several challenges, such as production costs, toxicity, ecological risks, and public acceptance. Application of CNT also has pros and cons, such that the lightweight of the CNT allows them to replace metallic wires, but dealing with nano-sized components makes it challenging.

Keywords: carbon nanotube (CNT); nanotechnology; remediation; pesticides; heavy metals

Creative Commons Attribution 4.0 International (CC BY 4.0) License
© 2022 Jia Hui Chung, Nur Hasyimah, Norelyza Hussein. This is an open access article distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share and Cite

ACS Styles
APA Styles
Chung, J. H., Hasyimah, N., & Hussein, N. (2021). Application of Carbon Nanotubes (CNTs) for Remediation of Emerging Pollutants - A Review. Tropical Aquatic and Soil Pollution, 2(1), 13–26. https://doi.org/10.53623/tasp.v2i1.27
MLA Styles
Find Other Styles

Hulla, J.E.; Sahu, S.C.; Hayes, A.W. (2015). Nanotechnology: History and future. Human & Experimental Toxicology, 34(12), 1318-1321. https://doi.org/10.1177/0960327115603588.

Wang, Y.; Pan, C.; Chu, W.; Vipin, A.K.; Sun, L. (2019). Environmental Remediation Applications of Carbon Nanotubes and Graphene Oxide: Adsorption and Catalysis. Nanomaterials, 9(3), 439. https://doi.org/10.3390/nano9030439 .

Ibrahim, K.S. (2013). Carbon nanotubes-properties and applications: a review. Carbon letters, 14(3), 131-144. https://doi.org/10.5714/CL.2013.14.3.131.

Veeman, D.; Shree, M.V.; Sureshkumar, P.; Jagadeesha, T.; Natrayan, L.; Ravichandran, M.; Paramasivam, P. (2021). Sustainable Development of Carbon Nanocomposites: Synthesis and Classification for Environmental Remediation. Journal of Nanomaterials, 2021, 5840645. https://doi.org/10.1155/2021/5840645.

Prajapati, V.; Sharma, P.K.; Banik, A. (2011). Carbon nanotubes and its applications. International Journal of Pharmaceutical Sciences and Research, 2, 1099-1107. http://dx.doi.org/10.13040/IJPSR.0975-8232.2(5).1099-07.

Song, B.; Xu, P.; Zeng, G.; Gong, J.; Zhang, P.; Feng, H.; Liu, Y.; Ren, X. (2018). Carbon nanotube-based environmental technologies: the adopted properties, primary mechanisms, and challenges. Reviews in Environmental Science and Bio/Technology, 17, 571-590, https://doi.org/10.1007/s11157-018-9468-z.

Pitroda, J.; Jethwa, B.; Dave, S.K. (2016). A critical review on carbon nanotubes. International Journal of Constructive Research in Civil Engineering, 2, 36-42. https://dx.doi.org/10.20431/2454-8693.0205007.

Ng, A.; Weerakoon, D.; Lim, E.; Padhye, L.P. (2019). Fate of environmental pollutants. Water Environment Research, 91, 1294-1325. https://doi.org/10.1002/wer.1225.

Passantino, A. (2012). Steroid hormones in food producing animals: Regulatory situation in Europe. In A bird’s-eye view of veterinary medicine; Perez-Marin, C.C., Ed.; IntechOpen: London, UK; pp. 33-50. http://dx.doi.org/10.5772/25785.

Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: a critical review. Environment International, 99, 107-119. https://doi.org/10.1016/j.envint.2016.12.010.

Tiryaki, O.; Temur, C. (2010). The fate of pesticide in the environment. Journal of Biological and Environmental Sciences, 4, 29-38.

Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. (2012). Heavy Metal Toxicity and the Environment. Experientia Supplementumm, 101, 122-164. https://doi.org/10.1007/978-3-7643-8340-4_6

Gautam, P.K.; Gautam, R.K.; Banerjee, S.; Chattopadhyaya, M.C.; Pandey, J.D. (2016). Heavy metals in the environment: fate, transport, toxicity and remediation technologies; In Heavy Metals, Pathania, D., Ed.; Nova Science Publishers Inc: New Yorl, USA; pp. 101-30.

Masindi, V.; Muedi, K.L. (2018). Environmental contamination by heavy metals; In Heavy Metals, Pathania, D., Ed.; Nova Science Publishers Inc: New Yorl, USA; pp. 115-132.

Sardar, K.; Ali, S.; Hameed, S.; Afzal, S.; Fatima, S.; Shakoor, M.B.; Bharwana, S.A.; Tauqeer, M. (2013). Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public Safety, 2, 172-179. https://doi.org/10.15580/GJEMPS.2013.4.060413652.

Artioli, Y. (2008). Adsorption. Encyclopedia of Ecology, 60-65. https://dx.doi.org/10.1016/B978-008045405-4.00252-4.

Carrales-Alvarado, D.H.; Leyva-Ramos, R.; Rodríguez-Ramos, I.; Mendoza-Mendoza, E.; Moral-Rodríguez, A.E. (2020). Adsorption capacity of different types of carbon nanotubes towards metronidazole and dimetridazole antibiotics from aqueous solutions: effect of morphology and surface chemistry. Environmental Science and Pollution Research, 27, 17123-17137. https://doi.org/10.1007/s11356-020-08110-x.

Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 170, 395-410. https://doi.org/10.1016/j.cej.2010.08.045.

Zhao, J.; Buldum, A.; Han, J.; Lu, J.P. (2002). Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 13, 195-200. http://dx.doi.org/10.1088/0957-4484/13/2/312.

Arora, B.; Attri, P. (2020). Carbon Nanotubes (CNTs): A Potential Nanomaterial for Water Purification. Journal of Composites Science, 4(3), 135. https://doi.org/10.3390/jcs4030135

Yan, H.; Gong, A.; He, H.; Zhou, J.; Wei, Y.; Lv, L. (2006). Adsorption of microcystins by carbon nanotubes. Chemosphere, 62(1), 142-148. https://doi.org/https://doi.org/10.1016/j.chemosphere.2005.03.075.

Li, Y.H.; Wang, S.; Cao, A.; Zhao, D.; Zhang, X.; Xu, C.; Luan, Z.; Ruan, D.; Liang, J.; Wu, D.; Wei, B. (2001). Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chemical Physics Letters, 350(5), 412-416. https://doi.org/https://doi.org/10.1016/S0009-2614(01)01351-3.

Li, Y.H.; Wang, S.; Wei, J.;, Zhang, X.; Xu, C.; Luan, Z.; Wu, D.; Wei, B. (2002). Lead adsorption on carbon nanotubes. Chemical Physics Letters, 357(3), 263-266. https://doi.org/https://doi.org/10.1016/S0009-2614(02)00502-X.

Peng, X.; Luan, Z.; Ding, J.; Di, Z.; Li, Y.; Tian, B. (2005). Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Materials Letters, 59(4), 399-403. https://doi.org/https://doi.org/10.1016/j.matlet.2004.05.090.

Abdullah, T.A.; Juzsakova, T.; Hafad, S.A.; Rasheed, R.T.; Al-Jammal, N.; Mallah, M.A.; Salman, A.D.; Le, P.C.; Domokos, E.; Aldulaimi, M. (2021). Functionalized multi-walled carbon nanotubes for oil spill cleanup from water. Clean Technologies and Environmental Policy. https://doi.org/10.1007/s10098-021-02104-0.

Aslam, M.M.; Kuo, H.W.; Den, W.; Usman, M.; Sultan, M.; Ashraf, H. (2021). Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability, 13(10). https://doi.org/10.3390/su13105717.

Liu, X.; Zhang, S.; Pan, B. (2012). Potential of carbon nanotubes in water treatment: A review. In Recent Progress in Carbon Nanotube Research, Book 2; InTech. http://dx.doi.org/10.5772/51332.

Das, R.; Abd Hamid, S.B.; Ali, M.E.; Ismail, A.F.; Annuar, M.S.M.; Ramakrishna, S. (2014) Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination, 354, 160-179. https://doi.org/10.1016/j.desal.2014.09.032.

Wang, R.; Chen, D.; Wang, Q.; Ying, Y.; Gao, W.; Xie, L. (2020). Recent advances in applications of carbon nanotubes for desalination: A review. Nanomaterials, 10, 1203. https://doi.org/10.3390/nano10061203.

Ihsanullah. (2019). Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separation and Purification Technology, 209, 307-337. https://doi.org/10.1016/j.seppur.2018.07.043.

Liu, D.; Mao, Y.; Ding, L. (2018). Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control. Journal of Water and Health, 16, 171-180. https://doi.org/10.2166/wh.2018.228.

Chen, H.; Wang, B.; Gao, D.; Guan, M.; Zheng, L.; Ouyang, H.; Chai, Z.; Zhao, Y.; Feng, W. (2013). Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small, 9, 2735–2746. https://doi.org/10.1002/smll.201202792.

Peng, X.; Sfeir, M.Y.; Zhang, F.; Misewich, J.A.; Wong, S.S. (2010). Covalent synthesis and optical characterization of double-walled carbon nanotube-nanocrystal heterostructures. The Journal of Physical Chemistry C, 114, 8766-8773. https://doi.org/10.1021/jp100580h.

Zhang, Y.; Wang, Y. (2020). Study on the treatment of actual waste-water by CWAO method. IOP Conference Series: Earth and Environmental Science, 514. http://dx.doi.org/10.1088/1755-1315/514/3/032044.

Jing, G.; Luan, M.; Chen, T. (2016). Progress of catalytic wet air oxidation technology. Arabian journal of Chemistry, 9, S1208-S1213. https://doi.org/10.1016/j.arabjc.2012.01.001.

Rocha, R.P.; Soares, O.S.G.P: Figueiredo, J.L.; Pereira, M.F.R. (2016). Tuning CNT properties for metal-free environmental catalytic applications. C-Journal of Carbon Research, 2. https://doi.org/10.3390/c2030017.

Yang, S.; Wang, X.; Yang, H.; Sun, Y.; Liu, Y. (2012). Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol. Journal of Hazardous Materials, 233-234, 18-24. https://doi.org/10.1016/j.jhazmat.2012.06.033.

Osbon, Y.; Kumar, M. (2019). Biocatalysis and strategies for enzyme improvement. In Biophysical Chemistry-Advance Applications, Khalid M.A.A. Ed.; IntechOpen: London, UK. http://dx.doi.org/10.5772/intechopen.85018.

Pavlidis, I.V.; Tsoufis, T.; Enotiadis, A.; Gournis, D.; Stamatis, H. (2010). Functionalized multi‐wall carbon nanotubes for lipase immobilization. Advanced Engineering Materials, 12, B179-B183. https://doi.org/10.1002/adem.200980021.

Neupane, S.; Patnode, K.; Li, H.; Baryeh, K.; Liu, G.; Hu, J.; Chen, B.; Pan, Y.; Yang, Z. (2019). Enhancing enzyme immobilization on carbon nanotubes via metal-organic frameworks for large-substrate biocatalysis. ACS Applied Materials & Interfaces, 11, 12133-12141. https://doi.org/10.1021/acsami.9b01077.

Hossain, S.M.Z.; Mansour, N. (2019). Biosensors for on-line water quality monitoring- A review. Arab Journal of Basic and Applied Sciences, 26, 502-518. https://doi.org/10.1080/25765299.2019.1691434.

Ejeian, F.; Etedali, P.; Mansouri-Tehrani, H.A.; Soozanipour, A.; Low, Z.X.; Asadnia, M.; Taheri-Kafrani, A.; Razmjou, A. (2018). Biosensors for wastewater monitoring: A review. Biosensors and Bioelectronics, 118, 66-79. https://doi.org/10.1016/j.bios.2018.07.019.

Paiva, C.M.; Covas, J.A. (2016). Carbon nanofibres and nanotubes for composite applications. Fibrous and textile materials for composite applications. In Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology; Rana, S. & Fangueiro, R., Eds.; Springer: Singapore, pp. 231-260. https://doi.org/10.1007/978-981-10-0234-2_7

Kobayashi, N.; Izumi, H.; Morimoto, Y. (2017). Review of toxicity studies of carbon nanotubes. Journal of Occupational Health, 59, 394-407. https://doi.org/10.1539/joh.17-0089-RA.

Girardello, R.; Tasselli, S.; Baranzini, N.; Valvassori, R.; de Eguileor, M.; Grimaldi, A. (2015). Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS One, 10. https://doi.org/10.1371/journal.pone.0144361.

Das, R.; Leo, B.F.; Murphy, F. (2018). The toxic truth about carbon nanotubes in water purification: A perspective view. Nanoscale Research Letters, 13. 183. https://doi.org/10.1186/s11671-018-2589-z.

Article Metrics

For more information on the journal statistics, click here.