Microplastics and antibiotics are two significant emerging pollutants found together in water bodies, raising concerns about their mutual effects. This review delves into how microplastics and antibiotics interact in aqueous environments and the ecotoxicological implications of such interactions, particularly the bioavailability of antibiotics and the prevalence of antibiotic-resistance genes. It outlines that antibiotics attach to microplastics primarily through hydrophobic, hydrogen-bonding, and electrostatic interactions. Other bonds, comprising halogen bonding, cation−π interaction, and negative charge-assisted hydrogen bonds, may also be involved to better explain antibiotic adsorption patterns. The adsorption of antibiotics to microplastics often follows the pseudo-second-order kinetic model and in some instances, the pseudo-first-order kinetic model. The common adsorption isotherms governing this interaction are the linear and Freundlich models. Microplastics may increase the biodegradation of adsorbed antibiotics due to the presence of antibiotic-degrading bacteria in the biofilms. They could also hamper direct photodegradation but facilitate indirect photodegradation of adsorbed antibiotics. However, their photodegradative effect remains inconclusive. Microplastics and antibiotics exhibit significant toxicity to algae, while their effects on fish and daphnia are less noticeable, suggesting that their combination does not pose an immediate threat to the well-being and proliferation of larger aquatic organisms. In some instances, microplastics reduce the deleterious effects of antibiotics on aquatic life. Microplastics serve as catalysts for gene transfer, enhancing the propagation of antibiotic-resistance genes in these ecosystems. This review underscores the importance of understanding the regulatory mechanisms of microplastics on antibiotic-resistance gene diversity, particularly at the gene expression level.
Tang, K.H.D. (2023). Enhanced plastic economy: a perspective and a call for international action. Environmental Science: Advances, 2(8), 1011‒1018. https://doi.org/10.1039/D3VA00057E.
Tang, K.H.D. (2022). Valorization of plastic waste through incorporation into construction materials. Civil and Sustainable Urban Engineering, 2(2), 96‒109. https://doi.org/10.53623/csue.v2i2.141.
Li, Y.; Liu, C.; Yang, H.; He, W.; Li, B.; Zhu, X.; Liu, S.; Jia, S.; Li, R.; Tang, K.H.D. (2024). Leaching of chemicals from microplastics: A review of chemical types, leaching mechanisms and influencing factors. Science of The Total Environment, 906, 167666. https://doi.org/10.1016/j.scitotenv.2023.167666.
Tang, K.H.D.; Li, R.; Li, Z.; Wang, D. (2024). Health risk of human exposure to microplastics: a review. Environmental Chemistry Letters, 22(3), 1155‒1183. https://doi.org/10.1007/s10311-024-01727-1.
Tang, K.H.D. (2022). Abundance of microplastics in wastewater treatment sludge. Journal of Human, Earth, and Future, 3(1), 138‒146. https://doi.org/10.28991/HEF-2022-03-01-010.
He, S.; Tong, J.; Xiong, W.; Xiang, Y.; Peng, H.; Wang, W.; Yang, Y.; Ye, Y.; Hu, M.; Yang, Z.; Zeng, G. (2023). Microplastics influence the fate of antibiotics in freshwater environments: Biofilm formation and its effect on adsorption behavior. Journal of Hazardous Materials, 442, 130078. https://doi.org/10.1016/j.jhazmat.2022.130078.
Eo, S.; Hong, S.H.; Song, Y.K.; Han, G.M.; Shim, W.J. (2019). Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Research, 160, 228‒237. https://doi.org/10.1016/j.watres.2019.05.053.
Wu, P., Huang, J., Zheng, Y., Yang, Y., Zhang, Y., He, F., Chen, H., Quan, G., Yan, J., Li, T., & Gao, B. (2019). Environmental occurrences, fate, and impacts of microplastics. Ecotoxicology and Environmental Safety, 184, 109612. https://doi.org/10.1016/j.ecoenv.2019.109612.
Di, M.; Wang, J. (2018). Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Science of the Total Environment, 616-617, 1620‒1627. https://doi.org/10.1016/j.scitotenv.2017.10.150.
Zheng, Z.; Huang, Y.; Liu, L.; Wang, L.; Tang, J. (2023). Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene. Journal of Hazardous Materials, 459, 132099. https://doi.org/10.1016/j.jhazmat.2023.132099.
Dang, C.; Liu, S.; Chen, Q.; Sun, W.; Zhong, H.; Hu, J.; Liang, E.; Ni, J. (2021). Response of microbial nitrogen transformation processes to antibiotic stress in a drinking water reservoir. Science of The Total Environment, 797, 149119. https://doi.org/10.1016/j.scitotenv.2021.149119.
Jiang, Q.; Feng, M.; Ye, C.; Yu, X. (2022). Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review. Science of the Total Environment, 806, 150568. https://doi.org/10.1016/j.scitotenv.2021.150568.
Joannard, B.; Sanchez-Cid, C. (2024). Bacterial dynamics of the plastisphere microbiome exposed to sub-lethal antibiotic pollution. Microbiome, 12(1), 97. https://doi.org/10.1186/s40168-024-01803-2.
Zhu, M.; Chen, J.; Peijnenburg, W.J.G.M.; Xie, H.; Wang, Z.; Zhang, S. (2023). Controlling factors and toxicokinetic modeling of antibiotics bioaccumulation in aquatic organisms: A review. Critical Reviews in Environmental Science and Technology, 53(15), 1431‒1451. https://doi.org/10.1080/10643389.2022.2142033.
Yu, Z.; An, Q.; Zhou, T.; Zhou, L.; Yan, B. (2024). Meta-analysis unravels the complex combined toxicity of microplastics and antibiotics in aquatic ecosystems. Science of The Total Environment, 929, 172503. https://doi.org/10.1016/j.scitotenv.2024.172503.
Fu, J.; Zhang, L.; Xiang, K.; Zhang, Y.; Wang, G.; Chen, L. (2023). Microplastic-contaminated antibiotics as an emerging threat to mammalian liver: enhanced oxidative and inflammatory damages. Biomaterials Science, 11(12), 4298‒4307. https://doi.org/10.1039/D2BM02116A.
Atugoda, T.; Wijesekara, H.; Werellagama, D.R.I.B.; Jinadasa, K.B.S.N.; Bolan, N.S.; Vithanage, M. (2020). Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water. Environmental Technology & Innovation, 19, 100971. https://doi.org/10.1016/j.eti.2020.100971.
Yu, F.; Li, Y.; Huang, G.; Yang, C.; Chen, C.; Zhou, T.; Zhao, Y.; Ma, J. (2020). Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution. Chemosphere, 260, 127650. https://doi.org/10.1016/j.chemosphere.2020.127650.
Guo, X.; Wang, J. (2019). Sorption of antibiotics onto aged microplastics in freshwater and seawater. Marine Pollution Bulletin, 149, 110511. https://doi.org/10.1016/j.marpolbul.2019.110511.
Zhuang, S.; Wang, J. (2023). Interaction between antibiotics and microplastics: Recent advances and perspective. Science of The Total Environment, 897, 165414. https://doi.org/10.1016/j.scitotenv.2023.165414.
Syranidou, E.; Kalogerakis, N. (2022). Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. Science of The Total Environment, 804, 150141. https://doi.org/10.1016/j.scitotenv.2021.150141.
Wang, Y.; Yang, Y.; Liu, X.; Zhao, J.; Liu, R.; Xing, B. (2021). Interaction of Microplastics with Antibiotics in Aquatic Environment: Distribution, Adsorption, and Toxicity. Environmental Science & Technology, 55(23), 15579‒15595. https://doi.org/10.1021/acs.est.1c04509.
Chen, Q.; Reisser, J.; Cunsolo, S.; Kwadijk, C.; Kotterman, M.; Proietti, M.; Slat, B.; Ferrari, F.F.; Schwarz, A.; Levivier, A.; Yin, D.; Hollert, H.; Koelmans, A.A. (2018). Pollutants in Plastics within the North Pacific Subtropical Gyre. Environmental Science & Technology, 52(2), 446‒456. https://doi.org/10.1021/acs.est.7b04682.
Wang, T.; Wang, L.; Chen, Q.; Kalogerakis, N.; Ji, R.; Ma, Y. (2020). Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Science of The Total Environment, 748, 142427. https://doi.org/10.1016/j.scitotenv.2020.142427.
Xu, B.; Liu, F.; Brookes, P.C.; Xu, J. (2018). The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics. Marine Pollution Bulletin, 131, 191‒196. https://doi.org/10.1016/j.marpolbul.2018.04.027.
Tong, F.; Liu, D.; Zhang, Z.; Chen, W.; Fan, G.; Gao, Y.; Gu, X.; Gu, C. (2023). Heavy metal-mediated adsorption of antibiotic tetracycline and ciprofloxacin on two microplastics: Insights into the role of complexation. Environmental Research, 216, 114716. https://doi.org/10.1016/j.envres.2022.114716.
Chen, Y.; Li, J.; Wang, F.; Yang, H.; Liu, L. (2021). Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation. Chemosphere, 265, 129133. https://doi.org/10.1016/j.chemosphere.2020.129133.
Kuang, B.; Chen, X.; Zhan, J.; Zhou, L.; Zhong, D.; Wang, T. (2023). Interaction behaviors of sulfamethoxazole and microplastics in marine condition: Focusing on the synergistic effects of salinity and temperature. Ecotoxicology and Environmental Safety, 259, 115009. https://doi.org/10.1016/j.ecoenv.2023.115009.
Mejías, C.; Martín, J.; Martín-Pozo, L.; Santos, J.L.; Aparicio, I.; Alonso, E. (2024). Adsorption of Macrolide Antibiotics and a Metabolite onto Polyethylene Terephthalate and Polyethylene Microplastics in Aquatic Environments. Antibiotics, 13(5), 408. https://doi.org/10.3390/antibiotics13050408.
Li, X.; Jiang, H.; Zhu, L.; Tang, J.; Liu, Z.; Dai, Y. (2024). Adsorption interactions between typical microplastics and enrofloxacin: Relevant contributions to the mechanism. Chemosphere, 351, 141181. https://doi.org/10.1016/j.chemosphere.2024.141181.
Liang, J.; Wu, J.; Zeng, Z.; Li, M.; Liu, W.; Zhang, T. (2023). Behavior and mechanisms of ciprofloxacin adsorption on aged polylactic acid and polyethlene microplastics. Environmental Science and Pollution Research, 30(22), 62938‒62950. https://doi.org/10.1007/s11356-023-26390-x.
Li, J.; Yu, S.; Chen, X.; Cai, Y.; Cui, M. (2023). Highly enhanced adsorption of antibiotics on aged polyamide microplastics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 658, 130690. https://doi.org/10.1016/j.colsurfa.2022.130690.
González-Pleiter, M.; Pedrouzo-Rodríguez, A.; Verdú, I.; Leganés, F.; Marco, E.; Rosal, R.; Fernández-Piñas, F. (2021). Microplastics as vectors of the antibiotics azithromycin and clarithromycin: Effects towards freshwater microalgae. Chemosphere, 268, 128824. https://doi.org/10.1016/j.chemosphere.2020.128824.
Huang, D.; Xu, Y.; Yu, X.; Ouyang, Z.; Guo, X. (2021). Effect of cadmium on the sorption of tylosin by polystyrene microplastics. Ecotoxicology and Environmental Safety, 207, 111255. https://doi.org/10.1016/j.ecoenv.2020.111255.
Xiong, Y.; Zhao, J.; Li, L.; Wang, Y.; Dai, X.; Yu, F.; Ma, J. (2020). Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution. Water Research, 184, 116100. https://doi.org/10.1016/j.watres.2020.116100.
Guo, X.; Liu, Y.; Wang, J. (2019). Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study. Marine Pollution Bulletin, 145, 547‒554. https://doi.org/10.1016/j.marpolbul.2019.06.063.
Yang, C.; Guan, J.; Yang, Y.; Liu, Y.; Li, Y.; Fei, Y. (2022). Interface behavior changes of weathered polystyrene with ciprofloxacin in seawater environment. Environmental Research, 212, 113132. https://doi.org/10.1016/j.envres.2022.113132.
Razanajatovo, R.M.; Ding, J.; Zhang, S.; Jiang, H.; Zou, H. (2018). Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Marine Pollution Bulletin, 136, 516‒523. https://doi.org/10.1016/j.marpolbul.2018.09.048.
Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F.; Fan, X. (2017). Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. Journal of Environmental Chemical Engineering, 5(1), 679‒698. https://doi.org/10.1016/j.jece.2016.12.043.
Haerifar, M.; Azizian, S. (2013). Mixed Surface Reaction and Diffusion-Controlled Kinetic Model for Adsorption at the Solid/Solution Interface. The Journal of Physical Chemistry C, 117(16), 8310‒8317. https://doi.org/10.1021/jp401571m.
Li, J.; Zhang, K.; Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution, 237, 460‒467. https://doi.org/10.1016/j.envpol.2018.02.050.
Lin, L.; Tang, S.; Wang, X.S.; Sun, X.; Han, Z.; Chen, Y. (2020). Accumulation mechanism of tetracycline hydrochloride from aqueous solutions by nylon microplastics. Environmental Technology & Innovation, 18, 100750. https://doi.org/10.1016/j.eti.2020.100750.
Jiang, Z.; Huang, L.; Fan, Y.; Zhou, S.; Zou, X. (2022). Contrasting effects of microplastic aging upon the adsorption of sulfonamides and its mechanism. Chemical Engineering Journal, 430, 132939. https://doi.org/10.1016/j.cej.2021.132939.
Wang, L.; Yang, H.; Guo, M.; Wang, Z.; Zheng, X. (2023). Adsorption of antibiotics on different microplastics (MPs): Behavior and mechanism. Science of The Total Environment, 863, 161022. https://doi.org/10.1016/j.scitotenv.2022.161022.
O'Connor, I.A.; Golsteijn, L.; Hendriks, A.J. (2016). Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris. Marine Pollution Bulletin, 113(1), 17‒24. https://doi.org/10.1016/j.marpolbul.2016.07.021.
Liu, N.; Yu, F.; Wang, Y.; Ma, J. (2022). Effects of environmental aging on the adsorption behavior of antibiotics from aqueous solutions in microplastic-graphene coexisting systems. Science of the Total Environment, 806, 150956. https://doi.org/10.1016/j.scitotenv.2021.150956.
Tang, K.H.D. (2023). Environmental Co-existence of Microplastics and Perfluorochemicals: A Review of Their Interactions. Biointerface Research in Applied Chemistry, 13, 587. http://doi.org/10.33263/BRIAC136.587.
Li, C.; Tang, K.H.D. (2021). Effects of pH and temperature on the leaching of di (2-ethylhexyl) phthalate and di-n-butyl phthalate from microplastics in simulated marine environment. Biointerface Research in Applied Chemistry, 13(3), 269. https://doi.org/10.33263/BRIAC133.269.
Wu, P.; Cai, Z.; Jin, H.; Tang, Y. (2019). Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Science of The Total Environment, 650, 671‒678. https://doi.org/10.1016/j.scitotenv.2018.09.049.
Zhao, Q.; Zhang, S.; Zhang, X.; Lei, L.; Ma, W.; Ma, C.; Song, L.; Chen, J.; Pan, B.; Xing, B. (2017). Cation–Pi Interaction: A Key Force for Sorption of Fluoroquinolone Antibiotics on Pyrogenic Carbonaceous Materials. Environmental Science & Technology, 51(23), 13659‒13667. https://doi.org/10.1021/acs.est.7b02317.
Yamate, T.; Kumazawa, K.; Suzuki, H.; Akazome, M. (2016). CH/π Interactions for Macroscopic Interfacial Adhesion Design. ACS Macro Letters, 5(7), 858‒861. https://doi.org/10.1021/acsmacrolett.6b00265.
Ling, C.; Li, X.; Zhang, Z.; Liu, F.; Deng, Y.; Zhang, X.; Li, A.; He, L.; Xing, B. (2016). High Adsorption of Sulfamethoxazole by an Amine-Modified Polystyrene–Divinylbenzene Resin and Its Mechanistic Insight. Environmental Science & Technology, 50(18), 10015‒10023. https://doi.org/10.1021/acs.est.6b02846.
Li, X.; Pignatello, J.J.; Wang, Y.; Xing, B. (2013). New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes. Environmental Science & Technology, 47(15), 8334‒8341. https://doi.org/10.1021/es4011042.
Shao, S.; Wu, X. (2020). Microbial degradation of tetracycline in the aquatic environment: a review. Critical Reviews in Biotechnology, 40(7), 1010‒1018. https://doi.org/10.1080/07388551.2020.1805585.
Li, S.; Chu, Y.; Ren, N.; Ho, S.-H. (2023). Cytochrome P450 enzyme-based biotransformation of pharmaceuticals and personal care products (PPCPs) by microalgae in the aquatic environment. Chemical Engineering Journal, 476, 146557. https://doi.org/10.1016/j.cej.2023.146557.
Wang, J.; Liu, X.; Dai, Y.; Ren, J.; Li, Y.; Wang, X.; Zhang, P.; Peng, C. (2020). Effects of co-loading of polyethylene microplastics and ciprofloxacin on the antibiotic degradation efficiency and microbial community structure in soil. Science of The Total Environment, 741, 140463. https://doi.org/10.1016/j.scitotenv.2020.140463.
Chen, X.; Yang, Y.; Ke, Y.; Chen, C.; Xie, S. (2022). A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. Science of The Total Environment, 814, 152852. https://doi.org/10.1016/j.scitotenv.2021.152852.
Bhagwat, G.; Carbery, M.; Anh Tran, T.K.; Grainge, I.; O’Connor, W.; Palanisami, T. (2021). Fingerprinting Plastic-Associated Inorganic and Organic Matter on Plastic Aged in the Marine Environment for a Decade. Environmental Science & Technology, 55(11), 7407‒7417. https://doi.org/10.1021/acs.est.1c00262.
Tang, K.H.D.; Hadibarata, T. (2022). The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective. Bioprocess and Biosystems Engineering, 45(11), 1865‒1878. https://doi.org/10.1007/s00449-022-02793-x.
Wang, J.; Peng, C.; Dai, Y.; Li, Y.; Jiao, S.; Ma, X.; Liu, X.; Wang, L. (2022). Slower antibiotics degradation and higher resistance genes enrichment in plastisphere. Water Research, 222, 118920. https://doi.org/10.1016/j.watres.2022.118920.
He, Y.; Wei, G.; Tang, B.; Salam, M.; Shen, A.; Wei, Y.; Zhou, X.; Liu, M.; Yang, Y.; Li, H.; Mao, Y. (2022). Microplastics benefit bacteria colonization and induce microcystin degradation. Journal of Hazardous Materials, 431, 128524. https://doi.org/10.1016/j.jhazmat.2022.128524.
Wu, X.; Wu, H.; Zhang, A.; Sekou, K.; Li, Z.; Ye, J. (2022). Influence of polystyrene microplastics on levofloxacin removal by microalgae from freshwater aquaculture wastewater. Journal of Environmental Management, 301, 113865. https://doi.org/10.1016/j.jenvman.2021.113865.
Lyu, Y.; Huang, T.; Liu, W.; Sun, W. (2022). Unveil the quantum chemical descriptors determining direct photodegradation of antibiotics under simulated sunlight: Batch experiments and model development. Journal of Environmental Chemical Engineering, 10(3), 108086. https://doi.org/10.1016/j.jece.2022.108086.
Wei, L.; Li, H.; Lu, J. (2021). Algae-induced photodegradation of antibiotics: A review. Environmental Pollution, 272, 115589. https://doi.org/10.1016/j.envpol.2020.115589.
Wang, X.; Li, Y.; Zhao, J.; Xia, X.; Shi, X.; Duan, J.; Zhang, W. (2020). UV-induced aggregation of polystyrene nanoplastics: effects of radicals, surface functional groups and electrolyte. Environmental Science: Nano, 7(12), 3914-3926. https://doi.org/10.1039/D0EN00518E.
Zhang, X.; Su, H.; Gao, P.; Li, B.; Feng, L.; Liu, Y.; Du, Z.; Zhang, L. (2022). Effects and mechanisms of aged polystyrene microplastics on the photodegradation of sulfamethoxazole in water under simulated sunlight. Journal of Hazardous Materials, 433, 128813. https://doi.org/10.1016/j.jhazmat.2022.128813.
Tian, Y.; Wei, L.; Yin, Z.; Feng, L.; Zhang, L.; Liu, Y.; Zhang, L. (2019). Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline: Role of chemical constituents and structure. Water Research, 164, 114940. https://doi.org/10.1016/j.watres.2019.114940.
Besseling, E.; Wang, B.; Lürling, M.; Koelmans, A.A. (2014). Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna. Environmental Science & Technology, 48(20), 12336‒12343. https://doi.org/10.1021/es503001d.
Zheng, X.; Liu, X.; Zhang, L.; Wang, Z.; Yuan, Y.; Li, J.; Li, Y.; Huang, H.; Cao, X.; Fan, Z. (2022). Toxicity mechanism of Nylon microplastics on Microcystis aeruginosa through three pathways: Photosynthesis, oxidative stress and energy metabolism. Journal of Hazardous Materials, 426, 128094. https://doi.org/10.1016/j.jhazmat.2021.128094.
Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. (2016). Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environmental Pollution, 215, 331‒339. https://doi.org/10.1016/j.envpol.2016.05.006.
Larue, C.; Sarret, G.; Castillo-Michel, H.; Pradas del Real, A.E. (2021). A Critical Review on the Impacts of Nanoplastics and Microplastics on Aquatic and Terrestrial Photosynthetic Organisms. Small, 17(20), 2005834. https://doi.org/10.1002/smll.202005834.
Shen, J.; Steinbach, R.; Tobin, J.M.; Mouro Nakata, M.; Bower, M.; McCoustra, M.R.S.; Bridle, H.; Arrighi, V.; Vilela, F. (2016). Photoactive and metal-free polyamide-based polymers for water and wastewater treatment under visible light irradiation. Applied Catalysis B: Environmental, 193, 226‒233. https://doi.org/10.1016/j.apcatb.2016.04.015.
Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. (2019). Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environmental Science & Technology, 53(14), 8177‒8186. https://doi.org/10.1021/acs.est.9b01474.
Deng, R.; Luo, H.; Huang, D.; Zhang, C. (2020). Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: Role of environmentally persistent free radicals. Chemosphere, 255, 126975. https://doi.org/10.1016/j.chemosphere.2020.126975.
Zhang, Y.; Xu, M.; Liu, X.; Wang, M.; Zhao, J.; Li, S.; Yin, M. (2021). Regulation of biochar mediated catalytic degradation of quinolone antibiotics: Important role of environmentally persistent free radicals. Bioresource Technology, 326, 124780. https://doi.org/10.1016/j.biortech.2021.124780.
Xiong, F.; Liu, J.; Xu, K.; Huang, J.; Wang, D.; Li, F.; Wang, S.; Zhang, J.; Pu, Y.; Sun, R. (2023). Microplastics induce neurotoxicity in aquatic animals at environmentally realistic concentrations: A meta-analysis. Environmental Pollution, 318, 120939. https://doi.org/10.1016/j.envpol.2022.120939.
Manzi, H.P.; Abou-Shanab, R.A.I.; Jeon, B.-H.; Wang, J.; Salama, E.-S. (2022). Algae: a frontline photosynthetic organism in the microplastic catastrophe. Trends in Plant Science, 27(11), 1159‒1172. https://doi.org/10.1016/j.tplants.2022.06.005.
Lu, D.; Ma, Z.; Peng, J.; Zhang, Y.; Liu, S.; Li, Q. (2022). Integrated comparison of growth and oxidative stress induced by tylosin in two freshwater algae Chlorella vulgaris and Raphidocelis subcapitata. Ecotoxicology, 31(3), 376‒384. https://doi.org/10.1007/s10646-021-02511-5.
You, X.; You, M.; Lyu, Y.; Peng, G.; Sun, W. (2022). Single and combined exposure to micro(nano)plastics and azithromycin disturbing the photosynthetic carbon fixation of Synechocystis sp. Environmental Science: Nano, 9(12), 4354‒4366. https://doi.org/10.1039/D2EN00204C.
Zhang, S.; Ding, J.; Razanajatovo, R.M.; Jiang, H.; Zou, H.; Zhu, W. (2019). Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus). Science of The Total Environment, 648, 1431‒1439. https://doi.org/10.1016/j.scitotenv.2018.08.266.
Han, Y.; Zhou, W.; Tang, Y.; Shi, W.; Shao, Y.; Ren, P.; Zhang, J.; Xiao, G.; Sun, H.; Liu, G. (2021). Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel Mytilus coruscus and induce synergistic immunotoxic effects. Science of the Total Environment, 770, 145273. https://doi.org/10.1016/j.scitotenv.2021.145273.
Yu, P.; Liu, Z.; Wu, D.; Chen, M.; Lv, W.; Zhao, Y. (2018). Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquatic Toxicology, 200, 28‒36. https://doi.org/10.1016/j.aquatox.2018.04.015.
Feng, L.-J.; Shi, Y.; Li, X.-Y.; Sun, X.-D.; Xiao, F.; Sun, J.-W.; Wang, Y.; Liu, X.-Y.; Wang, S.-G.; Yuan, X.-Z. (2020). Behavior of tetracycline and polystyrene nanoparticles in estuaries and their joint toxicity on marine microalgae Skeletonema costatum. Environmental Pollution, 263, 114453. https://doi.org/10.1016/j.envpol.2020.114453.
Zhu, Z.-L.; Wang, S.-C.; Zhao, F.-F.; Wang, S.-G.; Liu, F.-F.; Liu, G.-Z. (2019). Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environmental Pollution, 246, 509‒517. https://doi.org/10.1016/j.envpol.2018.12.044.
Yang, W.; Gao, X.; Wu, Y.; Wan, L.; Tan, L.; Yuan, S.; Ding, H.; Zhang, W. (2020). The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 195, 110484. https://doi.org/10.1016/j.ecoenv.2020.110484.
Prata, J.C.; Lavorante, B.R.B.O.; B.S.M. Montenegro, M.d.C.; Guilhermino, L. (2018). Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquatic Toxicology, 197, 143‒152. https://doi.org/10.1016/j.aquatox.2018.02.015.
Zhou, W.; Tang, Y.; Du, X.; Han, Y.; Shi, W.; Sun, S.; Zhang, W.; Zheng, H.; Liu, G. (2021). Fine polystyrene microplastics render immune responses more vulnerable to two veterinary antibiotics in a bivalve species. Marine Pollution Bulletin, 164, 111995. https://doi.org/10.1016/j.marpolbul.2021.111995.
Wang, S.; Xue, N.; Li, W.; Zhang, D.; Pan, X.; Luo, Y. (2020). Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. Science of the Total Environment, 708, 134594. https://doi.org/10.1016/j.scitotenv.2019.134594.
Vethaak, A.D.; Legler, J. (2021). Microplastics and human health. Science, 371(6530), 672‒674. https://doi.org/10.1126/science.abe5041.
Wang, J.; Chen, X. (2022). Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: An overview. Critical Reviews in Environmental Science and Technology, 52(4), 571‒630. https://doi.org/10.1080/10643389.2020.1835124.
Tang, K.H.D. (2024). Terrestrial and Aquatic Plastisphere: Formation, Characteristics, and Influencing Factors. Sustainability, 16(5). https://doi.org/10.3390/su16052163.
Dong, H.; Chen, Y.; Wang, J.; Zhang, Y.; Zhang, P.; Li, X.; Zou, J.; Zhou, A. (2021). Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. Journal of Hazardous Materials, 403, 123961. https://doi.org/10.1016/j.jhazmat.2020.123961.
Li, H.; Luo, Q.; Zhao, S.; Zhao, P.; Yang, X.; Huang, Q.; Su, J. (2022). Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment. Environmental Pollution, 313, 120185. https://doi.org/10.1016/j.envpol.2022.120185.
Ben, W.; Wang, J.; Cao, R.; Yang, M.; Zhang, Y.; Qiang, Z. (2017). Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere, 172, 392‒398. https://doi.org/10.1016/j.chemosphere.2017.01.041.
Wu, J.; Liu, D.-F.; Wu, J.; He, R.-L.; Cheng, Z.-H.; Li, W.-W. (2023). Underestimated Risks of Microplastics on the Environmental Spread of Antibiotic Resistance Genes. ACS ES&T Water, 3(8), 1976-1979. https://doi.org/10.1021/acsestwater.3c00209.
Qian, J.; He, X.; Wang, P.; Xu, B.; Li, K.; Lu, B.; Jin, W.; Tang, S. (2021). Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups. Environmental Pollution, 279, 116904. https://doi.org/10.1016/j.envpol.2021.116904.
Makabenta, J.M.V.; Nabawy, A.; Li, C.-H.; Schmidt-Malan, S.; Patel, R.; Rotello, V.M. (2021). Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nature Reviews Microbiology, 19(1), 23‒36. https://doi.org/10.1038/s41579-020-0420-1.
Xiang, Q.; Zhu, D.; Chen, Q.-L.; O’Connor, P.; Yang, X.-R.; Qiao, M.; Zhu, Y.-G. (2019). Adsorbed Sulfamethoxazole Exacerbates the Effects of Polystyrene (∼2 μm) on Gut Microbiota and the Antibiotic Resistome of a Soil Collembolan. Environmental Science & Technology, 53(21), 12823‒12834. https://doi.org/10.1021/acs.est.9b04795.
Dai, H.-H.; Gao, J.-F.; Wang, Z.-Q.; Zhao, Y.-F.; Zhang, D. (2020). Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system. Journal of Cleaner Production, 256, 120402. https://doi.org/10.1016/j.jclepro.2020.120402.
SUBMITTED: 10 May 2024
ACCEPTED: 07 June 2024
PUBLISHED:
9 June 2024
SUBMITTED to ACCEPTED: 28 days
DOI:
https://doi.org/10.53623/tasp.v4i1.446