Skip to main content

Biodegradation of Chlorpyrifos by Microbes: A Review

Author(s): Rubiyatno 1 , Aulia Maulana 2 , Jovale Vincent Tongco 3 , Arma Yulisa 4 , Sang Hyeok Park 4 , Md Abu Hanifa Jannat 4 , Rega Permana 5 , 6 , , Ocean Thakali 7 , Michael Lie 8 , Aouatif Fahssi 9 , Ouahiba Aziez 10 , Camilo Bastidas 11
Author(s) information:
1 Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
2 Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
3 Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, USA
4 Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Republic of Korea
5 School of Geography, Earth and Environmental Science, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
6 Universitas Padjadjaran, Faculty of Fisheries and Marine Science, Raya Bandung Sumedang Street KM. 21 Jatinangor, Sumedang, 45363, Indonesia
7 Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
8 Enviro Solutions, Kuala Lumpur, 59200 Malaysia
9 Faculty of Science, Ibnou Zohr University. P 8106, Agadir 80000, Morocco
10 University of Boumerdès Faculty of Technology Frantz fanon City-Boumerdes, Algeria
11 Faculty of Science, University of Cantabria, Avda. de los Castros s/n. 39005 Santander, Spain

Corresponding author

Chlorpyrifos (CP) is a widely used organophosphate pesticide known for its recalcitrant nature, raising concerns about potential ecological and health impacts due to its toxicity. Many plants and animals are contaminated with this pesticide. Microbial biodegradation offers an environmentally friendly and effective method to remove CP from the environment and mitigate its impacts, especially given its low cost, particularly when bioremediation is conducted on-site. Different types of microbial species have been found to function under various environmental conditions, with some, like Pseudomonas nitroreducens PS-2 and Pseudomonas aeruginosa (NCIM 2074), showing promising results with degradation rates of up to 100%. However, challenges exist, such as partial degradation caused by the presence of metabolites, and the recalcitrant nature of CP, which can impede microbes' ability to effectively degrade its hydrocarbon ring. Overall, a combination of approaches, such as microbial and algal methods, or the discovery of new microbial strains, can help overcome these challenges and further enhance the long-term viability of this technique.

Gilani, R. A.; Rafique, M.; Rehman, M.; Munis, M. F. H.; ur Rehman, S.; Chaudhary, H. J. (2016). Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. Journal of Basic Microbiology, 56(2), 105‒119. https://doi.org/10.1002/JOBM.201500336.

Zhang, X.; Shen, Y.; Yu, X. Y.; Liu, X. J. (2012). Dissipation of chlorpyrifos and residue analysis in rice, soil and water under paddy field conditions. Ecotoxicology and Environmental Safety, 78, 276‒280. https://doi.org/10.1016/J.ECOENV.2011.11.036.

Sharma, A. K.; Pandit J.; (2016). Biodegradation of Chlorpyrifos by Microbes - A Review. Journal of Bioscience and Biotechnology Discovery, 7(18), 1‒10.

Xu, F.; Chang, X.; Lou, D.; Wu, Q.; Zhou, Z. (2012). Chlorpyrifos exposure causes alternation in dopamine metabolism in PC12 cells. Toxicology Mechanisms and Methods, 22(4), 309‒314. https://doi.org/10.3109/15376516.2012.657260.

Nandhini, A. R.; Harshiny, M.; Gummadi, S. N. (2021). Chlorpyrifos in environment and food: a critical review of detection methods and degradation pathways. Environmental Science: Processes & Impacts Journal, 23(9), 1255‒1277. https://doi.org/10.1039/D1EM00178G.

Slotkin, T. A.; Levin, E. D.; Seidler, F. J. (2006). Comparative developmental neurotoxicity of organophosphate insecticides: Effects on brain development are separable from systemic toxicity. Environmental Health Perspectives, 114(5), 746‒751. https://doi.org/10.1289/EHP.8828.

Sogorb, M. A.; Vilanova, E.; Carrera, V. (2004). Future applications of phosphotriesterases in the prophylaxis and treatment of organophosporus insecticide and nerve agent poisonings. Toxicology Letters, 151(1), 219‒233. https://doi.org/10.1016/J.TOXLET.2004.01.022.

Rani, K.; Dhania, G. (2014). Bioremediation and biodegradation of pesticide from contaminated soil and water - a noval approach. International Journal of Current Microbiology and Applied Science, 3(10), 23‒33.

Harish, R.; Supreeth, M.; Chauhan J. B. (2013). Biodegradation of organophosphate pesticide by soil fungi. Advanced Biotech, 12(9), 4‒8.

Das, S.; Adhya, T. K. (2015). Degradation of chlorpyrifos in tropical rice soils. Journal of Environmental Management, 152, 36–42. https://doi.org/10.1016/J.JENVMAN.2015.01.025.

Barathidasan, K.; Reetha, D.; Milton, D. J.; Sriram, N.; Govindammal, M. (2014). Biodegradation of chlorpyrifos by co-culture of Cellulomonas fimi and Phanerochaete chrysosporium. African Journal of Microbiology Research, 8(9), 961‒966. https://doi.org/10.5897/AJMR2013.6530.

Jia, J.; Xue, P.; Ma, L.; Shi, K.; & Li, R. (2022). A novel approach to efficient degradation of pesticide intermediate 2,4,5-trichlorophenol by co-immobilized laccase-acetosyringone biocatalyst. Biochemical Engineering Journal, 187, 108607. https://doi.org/10.1016/J.BEJ.2022.108607.

Umetsu, N.; Mallipudi, N. M.; Toia, R. F.; March, R. B.; & Fukuto, T. R. (1981). Toxicological properties of phosphorothioate and related esters present as impurities in technical organophosphorus insecticides. Journal of Toxicology and Environmental Health, Part A Current Issues, 7(3–4), 481–497. https://doi.org/10.1080/15287398109529996.

Bose, S.; Kumar, P. S.; Vo , D. V. N. (2021). A review on the microbial degradation of chlorpyrifos and its metabolite TCP. Chemosphere, 283, 131447. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131447.

Ma, P.; Wang, L.; Xu, L.; Li, J.; Zhang, X.; Chen, H. (2020). Rapid quantitative determination of chlorpyrifos pesticide residues in tomatoes by surface-enhanced Raman spectroscopy. European Food Research and Technology, 246, 239‒251. https://doi.org/10.1007/S00217-019-03408-8.

Yuan, Y.; Chen, C.; Zheng, C.; Wang, X.; Yang, G.; Wang, Q.; Zhang, Z. (2014). Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control, 36(1), 63‒68. https://doi.org/10.1016/J.FOODCONT.2013.08.008.

Sinha, S. N.; Rao, M. V. V.; Vasudev, K. (2012). Distribution of pesticides in different commonly used vegetables from Hyderabad, India. Food Research International, 45(1), 161‒169. https://doi.org/10.1016/J.FOODRES.2011.09.028.

Hongsibsong, S.; Prapamontol, T.; Xu, T.; Hammock, B. D.; Wang, H.; Chen, Z. J.; Xu, Z. L. (2020). Monitoring of the organophosphate pesticide chlorpyrifos in vegetable samples from local markets in northern Thailand by developed immunoassay. International Journal of Environmental Research and Public Health, 17(13), 4723. https://doi.org/10.3390/IJERPH17134723.

Du, X.; Wang, P.; Fu, L.; Liu, H.; Zhang, Z.; Yao, C. (2020). Determination of chlorpyrifos in pears by raman spectroscopy with random forest regression analysis. Analytical Letters, 53(6), 821‒833. https://doi.org/10.1080/00032719.2019.1681439.

Vezirka, J.; Karov, I.; Pavlovska, G.; Ilija, B. (2017). Determination of chlorpyrifos in apple from the Resen region. Food and Environment Safety, XVI(1), 34‒39.

Eaton, D.L.; Daroff, R.B.; Autrup, H.; Bridges, J.; Buffler, P.; Costa, L.G.; Coyle, J.; McKhann, G.; Mobley, W.C.; Nadel, L.; Neubert, D. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology, 38, 1‒125. https://doi.org/10.1080/10408440802272158.

Hayward, S. J.; Gouin, T.; Wania, F. (2010). Levels and seasonal variability of pesticides in the rural atmosphere of Southern Ontario. Journal of Agricultural and Food Chemistry, 58(2), 1077‒1084. https://doi.org/10.1021/jf902898f.

Gebremariam, S. Y.; Beutel, M. W.; Yonge, D. R.; Flury, M.; Harsh, J. B. (2012). Adsorption and desorption of chlorpyrifos to soils and sediments. Reviews of Environmental Contamination and Toxicology, 123‒175. https://doi.org/10.1007/978-1-4614-1463-6_3.

Sun, F.; Chen, H. S. (2008). Monitoring of pesticide chlorpyrifos residue in farmed fish: Investigation of possible sources. Chemosphere, 71(10), 1866‒1869. https://doi.org/10.1016/J.CHEMOSPHERE.2008.01.034.

Bonansea, R. I.; Marino, D. J. G.; Bertrand, L.; Wunderlin, D. A.; Amé, M. V. (2017). Tissue-specific bioconcentration and biotransformation of cypermethrin and chlorpyrifos in a native fish (Jenynsia multidentata) exposed to these insecticides singly and in mixtures. Environmental Toxicology and Chemistry, 36(7), 1764‒1774. https://doi.org/10.1002/ETC.3613.

Deb, N.; Das, S. (2013). Chlorpyrifos toxicity in fish: A Review. Current World Environment Journal, 8(1), 77‒84. https://doi.org/10.12944/CWE.8.1.17.

Kokushi, E.; Uno, S.; Pal, S.; Koyama J. (2015). Effects of chlorpyrifos on the metabolome of the freshwater carp, Cyprinus Carpio. Environmental Toxicology, 30(3), 253‒260. https://doi.org/10.1002/TOX.21903.

Solomon, K. R.; Williams, W. M.; Mackay, D.; Purdy, J.; Giddings, J. M; Giesy, J. P. (2014). Properties and uses of chlorpyrifos in the United States. Reviews of Environmental Contamination and Toxicology, 13‒34. https://doi.org/10.1007/978-3-319-03865-0_2.

Burke, R.D.; Todd, S.W.; Lumsden, E.; Mullins, R.J.; Mamczarz, J.; Fawcett, W.P.; Gullapalli, R.P.; Randall, W.R.; Pereira, E.F.; Albuquerque, E.X. (2017). Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. Journal of neurochemistry, 142, 162‒177. https://doi.org/10.1111/JNC.14077.

Chlorpyrifos is here to stay. (accessed on 2 September 2023) Available online: https://cen.acs.org/environment/pesticides/US-EPA-Chlorpyrifos-stay/97/web/2019/07.

Fothergill, A.; Abdelghani A. (2013). A review of pesticide residue levels and their related health exposure risks. WIT Transactions on Ecology and the Environment, 170, 195‒205. https://doi.org/10.2495/FENV130181.

Dallegrave, A.; Pizzolato, T. M.; Barreto, F.; Eljarrat, E.; Barceló, D. (2016). Methodology for trace analysis of 17 pyrethroids and chlorpyrifos in foodstuff by gas chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 408, 7689‒7697. https://doi.org/10.1007/S00216-016-9865-5.

del Mar Gómez-Ramos, M.; Nannou, C.; Bueno, M. J. M.; Goday, A.; Murcia-Morales, M.; Ferrer, C.; Fernández-Alba, A. R. (2020). Pesticide residues evaluation of organic crops. A critical appraisal. Food Chemistry: X, 5, 100079. https://doi.org/10.1016/J.FOCHX.2020.100079.

Ávila-Díaz, J. A.; González-Márquez, L. C.; Longoria-Espinoza, R. M.; Ahumada-Cervantes, R.; Leyva-Morales, J. B.; Rodríguez-Gallegos, H. B. (2021). Chlorpyrifos and dimethoate in water and sediments of agricultural drainage ditches in Northern Sinaloa, Mexico. Bulletin of Environmental Contamination and Toxicology, 106, 839‒843. https://doi.org/10.1007/S00128-021-03160-4.

Gill, J.P.S.; Bedi, J.S.; Singh, R.; Fairoze, M.N.; Hazarika, R.A.; Gaurav, A.; Satpathy, S.K.; Chauhan, A.S.; Lindahl, J.; Grace, D.; Kumar, A. (2020). Pesticide residues in peri-urban bovine milk from India and risk assessment: A multicenter study. Scientific Reports, 10(1), 8054. https://doi.org/10.1038/s41598-020-65030-z.

Hasanuzzaman, M.; Rahman, M. A.; Islam, M. S.; Salam, M. A.; Nabi M. R. (2018). Pesticide residues analysis in water samples of Nagarpur and Saturia Upazila, Bangladesh. Applied Water Science, 8, 1‒6. https://doi.org/10.1007/S13201-018-0655-4.

Chai, L. K.; Mohd-Tahir, N.; Hansen, S.; Hansen H. C. B. (2009). Dissipation and leaching of acephate, chlorpyrifos, and their main metabolites in field soils of Malaysia. Journal of Environmental Quality, 38(3), 1160‒1169. https://doi.org/10.2134/JEQ2007.0644.

John, E. M.; Shaike J. M. (2015). Chlorpyrifos: pollution and remediation. Environmental Chemistry Letters, 13, 269‒291. https://doi.org/10.1007/S10311-015-0513-7.

Lari, S. Z.; Khan, N. A.; Gandhi, K. N.; Meshram, T. S.; Thacker, N. P. (2014). Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. Journal of Environmental Health Science and Engineering, 12, 1‒7. https://doi.org/10.1186/2052-336X-12-11.

Sreedevi, B.; Suvarchala, G.; Philip, G. H. (2014). Morphological and physiological abnormalities during development in zebrafish due to chlorpyrifos. Indian Journal of Scientific Research. 5(2), 1-8.

Eng, M. L.; Stutchbury, B. J. M.; Morrissey, C. A. (2017). Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Scientific Reports, 7(1), 15176. https://doi.org/10.1038/s41598-017-15446-x.

Sud, D.; Kumar, J.; Kaur, P.; & Bansal, P. (2020). Toxicity, natural and induced degradation of chlorpyrifos. Journal of the Chilean Chemical Society, 65(2), 4807‒4816. https://doi.org/10.4067/S0717-97072020000204807.

Shafiq-ur-Rehman; Rehman, S.; Waliullah, M. I. S. (2012). Chlorpyrifos-induced neuro-oxidative damage in bee. Toxicology and Environmental Health Sciences, 4(1), 30‒36. https://doi.org/10.1007/S13530-012-0114-9.

Stalin, A.; Suganthi, P.; Mathivani, S.; Paray, B. A.; Al-Sadoon, M. K.; Gokula, V.; Musthafa, M. S. (2019). Impact of chlorpyrifos on behavior and histopathological indices in different tissues of freshwater fish Channa punctatus (Bloch). Environmental Science and Pollution Research, 26, 17623‒17631. https://doi.org/10.1007/S11356-019-05165-3.

Jin, Y. ; Liu, Z.; Peng, T.; Fu, Z. (2015). The toxicity of chlorpyrifos on the early life stage of zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish & Shellfish Immunology, 43(2), 405‒414. https://doi.org/10.1016/J.FSI.2015.01.010.

Jaiswal, S.; Bara, J. K.; Soni, R.; Shrivastava, K. (2017). Bioremediation of chlorpyrifos contaminated soil by microorganism. International Journal of Environment Agriculture and Biotechnology, 2(4), 238833. https://doi.org/10.22161/IJEAB/2.4.21.

Rauh, V.A.; Garfinkel, R.; Perera, F.P.; Andrews, H.F.; Hoepner, L.; Barr, D.B.; Whitehead, R.; Tang, D.; Whyatt, R.W. (2006). Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics, 118(6), e1845-e1859. https://doi.org/10.1542/PEDS.2006-0338.

Meeker, J. D.; Ravi, S. R.; Barr, D. B.; Hauser, R. (2008). Circulating estradiol in men is inversely related to urinary metabolites of nonpersistent insecticides. Reproductive Toxicology, 25(2), 184‒191. https://doi.org/10.1016/J.REPROTOX.2007.12.005.

Ventura, C.; Núñez, M.; Miret, N.; Lamas, D.M.; Randi, A.; Venturino, A.; Rivera, E.; Cocca, C. (2012). Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or-independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicology letters, 213(2), 184‒193. https://doi.org/10.1016/J.TOXLET.2012.06.017.

Watts, M. (2012). Chlorpyrifos as a Possible Global Persistent Organic Pollutant. Pesticide Action Network North America, 1‒34.

Vidya Lakshmi, C.; Kumar, M.; Khanna, S. (2009). Biodegradation of chlorpyrifos in soil by enriched cultures. Current Microbiology, 58, 35‒38. https://doi.org/10.1007/S00284-008-9262-1.

Malakootian, M.; Shahesmaeili, A.; Faraji, M.; Amiri, H.; Martinez, S. S. (2020). Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: A systematic review and meta-analysis. Process Safety and Environmental Protection, 134, 292‒307. https://doi.org/10.1016/J.PSEP.2019.12.004.

Yuan, S.; Yang, F.; Yu, H.; Xie, Y.; Guo, Y.; & Yao, W. (2022). Degradation mechanism and toxicity assessment of chlorpyrifos in milk by combined ultrasound and ultraviolet treatment. Food Chemistry, 383, 132550. https://doi.org/10.1016/J.FOODCHEM.2022.132550.

Matusiewicz, H. (2017). Sample preparation for inorganic trace element analysis. Physical Sciences Reviews, 2(5), 20178001. https://doi.org/10.1515/PSR-2017-8001.

Bayoumi, R. A. ; Mohamed, E.; Louboudy, S.; Hendawy, A. (2009). Biodegradation of organophosphate pesticide chloropyrifos by Egyptian bacterial isolates. Communications in Agricultural and Applied Biological Sciences, 74(1), 177‒195.

Najavand, S.; Lotfi, A.S.; Noghabi, K.A.; Mohsenifar, A.; Milani, M.M.; Mota-Kalvanagh, A.; Behrouzi, R.; Masoumi, F. (2012). A high potential organophosphorus pesticide-degrading enzyme from a newly characterized, Pseudomonas aeruginosa NL01. African Journal of Microbiology Research, 6(20), 4261‒4269. https://doi.org/10.5897/AJMR11.699.

Serdar, C. M.; Gibson, D. T.; Munnecke, D. M.; Lancaster, J. H. (1928). Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Applied and Environmental Microbiology, 44(1), 246‒249. https://doi.org/10.1128/AEM.44.1.246-249.1982.

Vidya Lakshmi, C.; Kumar, M.; Khanna, S. (2008). Biotransformation of chlorpyrifos and bioremediation of contaminated soil. International Biodeterioration & Biodegradation, 62(2), 204‒209. https://doi.org/10.1016/J.IBIOD.2007.12.005.

Singh, B. K.; Walker, A.; Wright, D. J. (2006). Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: influence of different environmental conditions. Soil Biology and Biochemistry, 38(9), 2682‒2693. https://doi.org/10.1016/J.SOILBIO.2006.04.019.

Ajaz, M. S.; Ajaz Rasool, M.; khan Sherwani, S.; Adam Ali, T. (2012). High profile chlorpyrifos degrading Pseudomonas putida MAS-1 from indigenous soil: Gas chromatographic analysis and molecular characterization. International Journal of Basic Medical Sciences and Pharmacy (IJBMSP), 2(2).

Korade, D. L.; Fulekar, M. H. (2009). Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. Journal of Hazardous Materials, 172(2-3), 1344‒1350. https://doi.org/10.1016/J.JHAZMAT.2009.08.002.

Fulekar, M. H.; Geetha, M. (2008). Bioremediation of Chlorpyrifos by Pseudomonas aeruginosa using scale up technique. Journal of Applied Biosciences, 12, 657‒660.

Reddy, A. V. B.; Madhavi, V.; Reddy, K. G.; Madhavi, G. (2013). Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: Effect of pH and aluminium salts. Journal of Chemistry, 2013, 521045. https://doi.org/10.1155/2013/521045.

Awad, N. S.; Sabit, H. H.; Abo-Aba, S. E. M.; Bayoumi, R. A. (2011). Isolation, characterization and fingerprinting of some chlorpyrifos-degrading bacterial strains isolated from Egyptian pesticides-polluted soils. African Journal of Microbiology Research, 5(18), 2855‒2862. https://doi.org/10.5897/AJMR11.044.

Anwar, S.; Liaquat, F.; Khan, Q. M.; Khalid, Z. M.; Iqbal, S. (2009). Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. Journal of Hazardous Materials, 168(1), 400‒405. https://doi.org/10.1016/J.JHAZMAT.2009.02.059.

Abraham, J.; Silambarasan, S. (2013). Biodegradation of chlorpyrifos and its hydrolyzing metabolite 3,5,6-trichloro-2-pyridinol by Sphingobacterium sp. JAS3. Process Biochemistry, 48(10), 1559‒1564. https://doi.org/10.1016/J.PROCBIO.2013.06.034.

Deng, S.; Chen, Y.; Wang, D.; Shi, T.; Wu, X.; Ma, X.; Li, X.; Hua, R.; Tang, X.; Li, Q.X. (2015). Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. Journal of Hazardous Materials, 297, 17‒24. https://doi.org/10.1016/J.JHAZMAT.2015.04.052.

Abraham, J.; Silambarasan, S. (2016). Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pesticide Biochemistry and Physiology, 126, 13‒21. https://doi.org/10.1016/J.PESTBP.2015.07.001.

Akbar, S.; Sultan, S.; Kertesz, M. (2014). Bacterial community analysis in chlorpyrifos enrichment cultures via DGGE and use of bacterial consortium for CP biodegradation World Journal of Microbiology and Biotechnology, 30, 2755‒2766. https://doi.org/10.1007/S11274-014-1699-8.

Rao, M. A.; Scelza, R.; Scotti, R.; Gianfreda, L. (2010). Role of enzymes in the remediation of polluted environments. Journal of Soil Science and Plant Nutrition, 10(3), 333‒353. https://doi.org/10.4067/S0718-95162010000100008.

Kulshrestha, G.; Kumari, A. (2011). Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biology and fertility of soils, 47, 219‒225. https://doi.org/ 10.1007/s00374-010-0505-5.

Maya, K.; Upadhyay, S. N.; Singh, R. S.; Dubey, S. K. (2012). Degradation kinetics of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol (TCP) by fungal communities. Bioresource Technology, 126, 216‒223. https://doi.org/10.1016/j.biortech.2012.09.003.

Chen, S.; Liu, C.; Peng, C.; Liu, H.; Hu, M.; Zhong, G. (2012). Biodegradation of Chlorpyrifos and Its Hydrolysis Product 3,5,6-Trichloro-2-Pyridinol by a New Fungal Strain Cladosporium cladosporioides Hu-01. Plos One, 7(10), e47205. https://doi.org/10.1371/JOURNAL.PONE.0047205.

Silambarasan, S.; Abraham, J. (2014). Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil. Journal of Basic Microbiology, 54(1), 44‒55. https://doi.org/10.1002/jobm.201200437.

Hodzic, A. (2004). Re-use, recycling and degradation of composites, Green Composites, 252‒271. https://doi.org/10.1016/B978-1-85573-739-6.50015-4.

Liu, J.; Tan, L.; Wang, J.; Wang, Z.; Ni, H.; Li, L. (2016). Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere, 157, 200‒207. https://doi.org/10.1016/J.CHEMOSPHERE.2016.05.031.

Ignatowicz, K. (2009). Selection of sorbent for removing pesticides during water treatment Journal of Hazardous Materials, 169, 953‒957. https://doi.org/10.1016/J.JHAZMAT.2009.04.061.

Qiu, D.; Ke, M.; Zhang, Q.; Zhang, F.; Lu, T.; Sun, L.; Qian, H. (2022). Response of microbial antibiotic resistance to pesticides: An emerging health threat. Science of The Total Environment, 850, 158057. https://doi.org/10.1016/J.SCITOTENV.2022.158057.

Ramakrishnan, B.: Venkateswarlu, K.; Sethunathan, N.; Megharaj, M. (2019). Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance?. Science of The Total Environment, 654, 177‒189. https://doi.org/10.1016/J.SCITOTENV.2018.11.041.

Hedbavna, P.; Rolfe, S. A.; Huang, W. E.; Thornton, S. F. (2016). Biodegradation of phenolic compounds and their metabolites in contaminated groundwater using microbial fuel cells. Bioresource Technology, 200, 426‒434. https://doi.org/10.1016/J.BIORTECH.2015.09.092.

Rodríguez, A.; Castrejón-Godínez, M.L.; Salazar-Bustamante, E.; Gama-Martínez, Y.; Sánchez-Salinas, E.; Mussali-Galante, P.; Tovar-Sánchez, E.; Ortiz-Hernández, M.L. (2020). Omics approaches to pesticide biodegradation. Current Microbiology, 77, 545‒563. https://doi.org/10.1007/S00284-020-01916-5.

About this article

SUBMITTED: 19 January 2024
ACCEPTED: 13 March 2024
PUBLISHED: 17 March 2024
SUBMITTED to ACCEPTED: 55 days
DOI: https://doi.org/10.53623/tasp.v4i1.403

Cite this article
Rubiyatno, Maulana, A. ., Tongco, J. V. ., Yulisa, A. ., Park , S. H., Jannat, M. A. H. ., Permana, R. ., Thakali, O. ., Lie, M., Fahssi, A. ., Aziez, O. ., & Bastidas, C. . (2024). Biodegradation of Chlorpyrifos by Microbes: A Review. Tropical Aquatic and Soil Pollution, 4(1), 10–26. https://doi.org/10.53623/tasp.v4i1.403
Keywords
Accessed
787
Citations
0
Share this article