Skip to main content

Role of Fungi in Biodegradation of Bisphenol A: A Review

Author(s): Risky Ayu Kristanti 1 , Fitria Ningsih 2 , 3 , , Indri Yati 4 , Joseph Kasongo 5 , Elias Mtui 6 , Kong Rachana 7
Author(s) information:
1 Research Center for Oceanograpgy, National Research and Innovation Agency (BRIN), Pasir Putih I, Ancol, Jakarta, 14430 Indonesia
2 Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
3 Center of Excellence for Indigenous Biological Resources-Genome Studies, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
4 Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B.J Habibie (PUSPIPTEK) Serpong, South Tangerang 15314, Indonesia
5 Faculty of Science, University of Kinshasa, B.P. 190, Kinshasa, XI, Democratic Republic Congo.
6 College of Engineerning and Technology, University of Dar es Salaam, Dar es Salaam, Tanzania.
7 United Nations Institute for Training and Research (UNITAR), 7 bis, Avenue de la Paix, CH-1202 Geneva 2, Switzerland

Corresponding author

Bisphenol A (BPA) is recognized as an endocrine disruptor, capable of interfering with the normal functioning of hormones within the body by mimicking the effects of estrogen. Drinking water is one of the most common pathways of exposure to BPA as it can permeate plastic products and other materials, entering water sources. This article presents a comprehensive overview of BPA, including its incidence, origins, environmental fate, its impact on human health, and the role of fungi in the biodegradation of BPA. Fungi are natural decomposers, capable of breaking down organic compounds, including BPA, under suitable conditions. Studies have demonstrated that specific species of fungi can effectively biodegrade BPA. Some fungi utilize ligninolytic enzymes, such as laccases and peroxidases, to break down the phenolic rings of BPA. Other fungi employ non-ligninolytic enzymes, such as esterases and hydrolases, to cleave the ester linkages in BPA. Furthermore, some fungi can break down BPA via cometabolic pathways, whereby the chemical is degraded as a side reaction to the degradation of another substrate. The use of immobilized enzymes for BPA degradation has also demonstrated potential. Immobilized enzymes are those that are attached to a solid support, such as a polymer or matrix, allowing them to be used multiple times and enhance their stability and catalytic activity

Previous article

Della Rocca, Y.; Traini, E.M.; Diomede, F.; Fonticoli, L.; Trubiani, O.; Paganelli, A.; Pizzicannella, J.; Marconi, G.D. (2023). Current Evidence on Bisphenol A Exposure and the Molecular Mechanism Involved in Related Pathological Conditions. Pharmaceutics, 15, 908. https://doi.org/10.3390/pharmaceutics15030908.

Besaratinia, A. (2023). The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. International Journal of Molecular Sciences, 24, 7951. https://doi.org/10.3390/ijms24097951.

Ni, L.; Zhong, J.; Chi, H.; Lin, N.; Liu, Z. (2023). Recent Advances in Sources, Migration, Public Health, and Surveillance of Bisphenol A and Its Structural Analogs in Canned Foods. Foods, 12, 1989. https://doi.org/10.3390/foods12101989.

Cheng, Z.; Lin, X.; Wu, M.; Lu, G.; Hao, Y.; Mo, C.; Li, Q.; Wu, J.; Wu, J.; Hu, B.X. (2023). Combined Effects of Polyamide Microplastics and Hydrochemical Factors on the Transport of Bisphenol A in Groundwater. Separations, 10, 123. https://doi.org/10.3390/separations10020123.

Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. (2020). A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. International Journal of Environmental Research and Public Health, 17, 1212. https://doi.org/10.3390/ijerph17041212.

Pérez-Bermejo, M.; Mas-Pérez, I.; Murillo-Llorente, M.T. (2021). The Role of Bisphenol A in Diabetes and Obesity. Biomedicines, 9, 666. https://doi.org/10.3390/biomedicines9060666.

Liu, J.; Qi, Y.; Fonseca, M.I.; Lorigo, M.; Cairrao, E. (2022). Endocrine-Disrupting Effects of Bisphenol A on the Cardiovascular System: A Review. Journal of Xenobiotics, 12, 181‒213. https://doi.org/10.3390/jox12030015.

Zahra, A.; Kerslake, R.; Kyrou, I.; Randeva, H.S.; Sisu, C.; Karteris, E. (2022). Impact of Environmentally Relevant Concentrations of Bisphenol A (BPA) on the Gene Expression Profile in an In Vitro Model of the Normal Human Ovary. International Journal of Molecular Sciences, 23, 5334. https://doi.org/10.3390/ijms23105334.

Repossi, A.; Farabegoli, F.; Gazzotti, T.; Zironi, E.; Pagliuca, G. (2016). Bisphenol A in Edible Part of Seafood. Italian Journal of Food Safety, 5, 5666. https://doi.org/10.4081/ijfs.2016.5666.

Arnold, S.M.; Clark, K.E.; Staples, C.A.; Klecka, G.M.; Dimond, S.S.; Caspers, N.; Hentges, S.G. (2013). Relevance of drinking water as a source of human exposure to bisphenol A. Journal of Exposure Science and Environmental Epidemiology, 23, 137‒144. https://doi.org/10.1038/jes.2012.66.

Chevrier, J.; Gunier, R.B.; Bradman, A.; Holland, N.T.; Calafat, A.M.; Eskenazi, B.; Harley, K.G. (2013). Maternal urinary bisphenol A during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environmental Health Perspectives, 121, 138‒144. http://doi.org/10.1289/ehp.1205092.

Olatunji, O.S.; Fatoki, O.S.; Opeolu, B.O.; Ximba, B.J.; Chitongo, R. (2017). Determination of selected steroid hormones in some surface water around animal farms in Cape Town using HPLC-DAD. Environmental Monitoring and Assessment, 189, 363. https://doi.org/10.1007/s10661-017-6070-8.

Jonkers, N.; Sousa, A.; Galante-Oliveira, S.; Barroso, C.M.; Kohler, H.-P.E.; Giger, W. (2009). Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environmental Science and Pollution Research, 17, 834‒843. https://doi.org/10.1007/s11356-009-0275-5.

Arditsoglou, A.; Voutsa, D. (2012). Occurrence and partitioning of endocrine-disrupting compounds in the marine environment of Thermaikos Gulf, Northern Aegean Sea, Greece. Marine Pollution Bulletin, 64, 2443‒2452. https://doi.org/10.1016/j.marpolbul.2012.07.048.

Heemken, O.; Reincke, H.; Stachel, B.; Theobald, N. (2001). The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere, 45, 245‒259. https://doi.org/10.1016/s0045-6535(00)00570-1.

Shi, J.; Liu, X.; Chen, Q.; Zhang, H. (2014). Spatial and seasonal distributions of estrogens and bisphenol A in the Yangtze River Estuary and the adjacent East China Sea. Chemosphere, 111, 336‒343. https://doi.org/10.1016/j.chemosphere.2014.04.046.

Čelić, M.; Škrbić, B.D.; Insa, S.; Živančev, J.; Gros, M.; Petrović, M. (2020). Occurrence and assessment of environmental risks of endocrine disrupting compounds in drinking, surface and wastewaters in Serbia. Environmental Pollution, 262, 114344. https://doi.org/10.1016/j.envpol.2020.114344.

Lee, S.; Jeong, W.; Kannan, K.; Moon, H.-B. (2016). Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea. Water Research, 103, 182‒188. https://doi.org/10.1016/j.watres.2016.07.034.

Anđelić, I.; Roje-Busatto, R.; Ujević, I.; Vuletić, N.; Matijević, S. (2020). Distribution of Bisphenol A in Sediment and Suspended Matter and Its Possible Impact on Marine Life in Kaštela Bay, Adriatic Sea, Croatia. Journal of Marine Science and Engineering, 8, 480. https://doi.org/10.3390/jmse8070480.

Odera, P.A. (2019). Determination of Bisphenol A (BPA) in Thermal Papers, Selected Soil Samples and the Effect of Temperature and Humidity on Its Concentration. Master Thesis, University of Nairobi, Nairobi, Kenya.

Olujimi, O.; Fatoki, O.; Daso, A.; Akinsoji, O.; Oputu, O.; Oluwafemi, O., et al. (2013). Levels of Nonylphenol and Bisphenol A in wastewater treatment plant effluent, sewage sludge, and leachates around Cape Town, South Africa. In Handbook of Wastewater Treatment; Valdez, C.J., Maradona, E.M., Eds.; Nova Science: New York, USA; pp. 305‒315.

Oketola, A.A.; Fagbemigun, T.K. (2013). Determination of nonylphenol, octylphenol and bisphenol-A in water and sediments of two major rivers in Lagos, Nigeria. Journal of Environmental Protection, 4, 38‒45. http://doi.org/10.4236/jep.2013.47A005.

Gibson, R.; Duran-Alvarez, J.C.; Estrada, K.L.; Chavez, A.; Jimenez Cisneros, B. (2010). Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere, 81, 1437‒1445. https://doi.org/10.1016/j.chemosphere.2010.09.006.

Song, S.; Ruan, T.; Wang, T.; Liu, R.; Jiang, G. (2012). Distribution and preliminary exposure assessment of bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China. Environmental Science & Technology, 46, 13136‒13143. https://doi.org/10.1021/es303960k.

Vieceli, N.; Baldasso, R.; Filho, I.; Manfredini, K. (2014). Occurrence of Bisphenol A in soil and leachate of a municipal landfill: effect of the sample acidification. Scientia cum Industria, 2, 10‒14. http://dx.doi.org/10.18226/23185279.v2iss1p10.

Di Bella, G.; Ben Mansour, H.; Ben Tekaya, A.; Beltifa, A.; Potortì, A.G.; Saiya, E., et al. (2018). Plasticizers and BPA residues in Tunisian and Italian culinary herbs and spices. Journal of Food Science, 83, 1769‒1774. https://doi.org/10.1111/1750-3841.14171.

Omoruyi, I.M.; Ahamioje, D.; Pohjanvirta, R. (2014). Dietary exposure of Nigerians to mutagens and estrogen-like chemicals. International Journal of Environmental Research and Public Health, 11, 8347‒8367. https://doi.org/10.3390/ijerph110808347.

Osman, M.A.; Mahmoud, G.I.; Elgammal, M.H.; Hasan, R.S. (2018). Studying of bisphenol A levels in some canned food, feed and baby bottles in Egyptian markets. Fresenius Environmental Bulletin, 27, 9374‒9381.

Lim, D.S.; Kwack, S.J.; Kim, K.-B.; Kim, H.S.; Lee, B.M. (2009). Risk Assessment of Bisphenol A Migrated from Canned Foods in Korea. Journal of Toxicology and Environmental Health Part A: Current Issues, 72, 1327‒1335. https://doi.org/10.1080/15287390903212444.

Liao, C.Y.; Kannan, K. (2014). A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. Food Additives & Contaminants: Part A, 31, 319‒329. https://doi.org/10.1080/19440049.2013.868611.

Liao, C.Y.; Kannan, K. (2013). Concentrations and Profiles of Bisphenol A and Other Bisphenol Analogues in Foodstuffs from the United States and Their Implications for Human Exposure. Journal of Agricultural and Food Chemistry, 61, 4655‒4662. https://doi.org/10.1021/jf400445n.

Sajiki, J.; Miyamoto, F.; Fukata, H.; Mori, C.; Yonekubo, J.; Hayakawa, K. (2007). Bisphenol A (BPA) and its source in foods in Japanese markets. Food Additives & Contaminants: Part A, 24, 103‒112. https://doi.org/10.1080/02652030600936383.

Cao, X.L.; Kosarac, I.; Popovic, S.; Zhou, S.; Smith, D.; Dabeka, R. (2019). LC-MS/MS analysis of bisphenol S and five other bisphenols in total diet food samples. Food Additives & Contaminants: Part A, 36, 1740‒1747. https://doi.org/10.1080/19440049.2019.1643042.

Thomson, B.M.; Grounds, P.R. (2005). Bisphenol A in canned foods in New Zealand: An exposure assessment. Food Additives & Contaminants, 22, 65‒72. https://doi.org/10.1080/02652030400027920.

Khan, N.G.; Correia, J.; Adiga, D.; Rai, P.S.; Dsouza, H.S.; Chakrabarty, S.; Kabekkodu, S.P. (2021). A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. Environmental Science and Pollution Research International, 28, 19643‒19663. https://doi.org/10.1007/s11356-021-13071-w.

Siddique, M.A.; Harrison, S.M.; Monahan, F.J.; Cummins, E.; Brunton, N.P. (2021). Bisphenol A and Metabolites in Meat and Meat Products: Occurrence, Toxicity, and Recent Development in Analytical Methods. Foods, 10, 714. https://doi.org/10.3390/foods10040714.

Krivohlavek, A.; Mikulec, N.; Budeč, M.; Barušić, L.; Bošnir, J.; Šikić, S.; Jakasa, I.; Begović, T.; Janda, R.; Vitale, K. (2023). Migration of BPA from Food Packaging and Household Products on the Croatian Market. International Journal of Environmental Research and Public Health, 20, 2877. https://doi.org/10.3390/ijerph20042877.

Robles-Aguilera, V.; Gálvez-Ontiveros, Y.; Rodrigo, L.; Salcedo-Bellido, I.; Aguilera, M.; Zafra-Gómez, A.; Monteagudo, C.; Rivas, A. (2021). Factors Associated with Exposure to Dietary Bisphenols in Adolescents. Nutrients, 13, 1553. https://doi.org/10.3390/nu13051553.

Adegoke, E.O.; Rahman, M.S.; Park, Y.-J.; Kim, Y.J.; Pang, M.-G. (2021). Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. International Journal of Molecular Sciences, 22, 3939. https://doi.org/10.3390/ijms22083939.

Fernández, J.H.; Guerra, Y.; Cano, H. (2022). Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules, 27, 4832. https://doi.org/10.3390/molecules27154832.

Ribeiro, E.; Ladeira, C.; Viegas, S. (2017). Occupational Exposure to Bisphenol A (BPA): A Reality That Still Needs to Be Unveiled. Toxics, 5, 22. https://doi.org/10.3390/toxics5030022.

Della Rocca, Y.; Traini, E.M.; Diomede, F.; Fonticoli, L.; Trubiani, O.; Paganelli, A.; Pizzicannella, J.; Marconi, G.D. (2023). Current Evidence on Bisphenol A Exposure and the Molecular Mechanism Involved in Related Pathological Conditions. Pharmaceutics, 15, 908. https://doi.org/10.3390/pharmaceutics15030908.

Mączka, W.; Grabarczyk, M.; Wińska, K. (2022). Can Antioxidants Reduce the Toxicity of Bisphenol? Antioxidants, 11, 413. https://doi.org/10.3390%2Fantiox11020413.

Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. (2020). Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. International Journal of Molecular Sciences, 21, 5761. https://doi.org/10.3390/ijms21165761.

Lee, S.M., Koo, B.W., Choi, J.W., Choi, D.H., An, B.S., Jeung, E.B., Choi, I.G. (2005). Degradation of bisphenol A by white rot fungi, Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity. Biological and Pharmaceutical Bulletin, 28, 201‒207. https://doi.org/10.1248/bpb.28.201.

Tsutsumi, Y., Haneda, T., Nishida, T. (2001). Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere, 42, 271‒276. https://doi.org/10.1016/s0045-6535(00)00081-3.

Li, S.; Tian, K.; Qiu, Q.; Yu, Y.; Li, H.; Chang, M.; Sun, X.; Gu, J.; Zhang, F.; Wang, Y.; et al. (2023). Study on Genomics of the Bisphenol A-Degrading Bacterium Pseudomonas sp. P1. Water, 15, 830. https://doi.org/10.3390/w15040830.

Lee, H., Jang, Y., Choi, Y.S., Kim, M.J., Lee, J., Lee, H., Hong, J.H., Lee, Y.M., Kim, G.H., Kim, J.J. (2014). Biotechnological procedures to select white rot fungi for the degradation of PAHs. Journal of Microbiological Methods, 97, 56‒62. https://doi.org/10.1016/j.mimet.2013.12.007.

Liu, J., Sun, K., Zhu, R., Wang, X., Gatheru Waigi, M., Li, S. (2023). Biotransformation of bisphenol A in vivo and in vitro by laccase-producing Trametes hirsuta La-7: Kinetics, products, and mechanisms. Environmental Pollution, 321, 121155. https://doi.org/10.1016/j.envpol.2023.121155.

Zdarta, J., Meyer, A.S., Jesionowski, T., Pinelo, M. (2018). A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts, 8, 92. https://doi.org/10.3390/catal8020092.

Dong, M., Wu, Z., Lu, M., Wang, Z., Li, Z. (2012). Combining the Physical Adsorption Approach and the Covalent Attachment Method to Prepare a Bifunctional Bioreactor. International Journal of Molecular Sciences, 13, 11443‒11454. https://doi.org/10.3390/ijms130911443.

Chang, K.-L., Teng, T.-C., Fu, C.-K., Liu, C.-H. (2019). Improving biodegradation of Bisphenol A by immobilization and inducer. Process Safety and Environmental Protection, 128, 128‒134. https://doi.org/10.1016/j.psep.2019.05.038.

Abdul Latif, A., Maqbool, A., Zhou, R., Arsalan, M., Sun, K., Si, Y. (2022). Optimized degradation of bisphenol A by immobilized laccase from Trametes versicolor using Box-Behnken design (BBD) and artificial neural network (ANN). Journal of Environmental Chemical Engineering, 10, 107331. https://doi.org/10.1016/j.jece.2022.107331.

About this article

SUBMITTED: 07 April 2023
ACCEPTED: 30 June 2023
PUBLISHED: 12 July 2023
SUBMITTED to ACCEPTED: 85 days
DOI: https://doi.org/10.53623/tasp.v3i2.241

Cite this article
Kristanti, R. A., Ningsih, F. ., Yati, I. ., Kasongo, J. ., Mtui, E. ., & Rachana, K. . (2023). Role of Fungi in Biodegradation of Bisphenol A: A Review. Tropical Aquatic and Soil Pollution, 3(2), 131–143. https://doi.org/10.53623/tasp.v3i2.241
Keywords
Accessed
661
Citations
0
Share this article