Tang, K.H.D. (2021). Phytoextraction of Lead: Its Feasibility, Constraints and Concerns. Asian Soil Research Journal, 5(4), 1–9. https://doi.org/10.9734/asrj/2021/v5i430113.
Duffus, J.H. (2002). Heavy metals’a meaningless term. Pure and Applied Chemistry, 74(5), 793-807. http://dx.doi.org/10.1351/pac200274050793.
Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. (2012). Heavy metals toxicity and the environment. Experientia Supplementum, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4.
Ngole, V.M.; Ekosse, G.I.E. (2012). Copper, nickel and zinc contamination in soils within the precincts of mining and landfilling environments. International Journal of Environmental Science and Technology, 9(3), 485–494. https://doi.org/10.1007/s13762-012-0055-5.
Tang, Y.Y., Tang, K.H.D.; Maharjan, A.K.; Aziz, A.A.; Bunrith, S. (2021). Malaysia moving towards a sustainability municipal waste management. Industrial and Domestic Waste Management, 1(1), 26–40. http://doi.org/10.53623/idwm.v1i1.51.
Alzamora, B.R.; de V. Barros, R.T. (2020). Review of municipal waste management charging methods in different countries. Waste Management, 115, 47–55. https://doi.org/https://doi.org/10.1016/j.wasman.2020.07.020.
Waste to energy for a sustainable future. (accessed on 1 Augusts 2022) Available online: https://www.mida.gov.my/waste-to-energy-for-a-sustainable-future/.
Zainun, N.Y.; Rahman, I.A.; Rothman, R.A. (2016). Mapping Of Construction Waste Illegal Dumping Using Geographical Information System (GIS). IOP Conference Series: Materials Science and Engineering, 160, 12049. https://doi.org/10.1088/1757-899x/160/1/012049.
Ismail, Z.; Abdullah, S.Z.; Othman, S.Z.; Shirazi, S.M.; Karim, R. (2013). Assessment of the Relative Adequacy of Landfills as a Means of Solid Waste Disposal in Malaysia. CLEAN – Soil, Air, Water, 41(11), 1122–1128. https://doi.org/https://doi.org/10.1002/clen.201200316.
Hussein, M.; Yoneda, K.; Mohd-Zaki, Z.; Amir, A.; Othman, N. (2021). Heavy metals in leachate, impacted soils and natural soils of different landfills in Malaysia: An alarming threat. Chemosphere, 267, 128874. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.128874.
Agamuthu, P.; Fauziah, S.H. (2010). Heavy metal pollution in landfill environment: A Malaysian case study. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 1–4. https://doi.org/10.1109/ICBBE.2010.5516886.
Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D. (2016). Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site. Journal of Environmental and Public Health, 2016, 8926453. https://doi.org/10.1155/2016/8926453.
Peng, N.; Li, Y.; Liu, T.; Lang, Q.; Gai, C.; Liu, Z. (2017). Polycyclic Aromatic Hydrocarbons and Toxic Heavy Metals in Municipal Solid Waste and Corresponding Hydrochars. Energy & Fuels, 31(2), 1665–1671. https://doi.org/10.1021/acs.energyfuels.6b02964.
Cittadino, A.; Ocello, N.; Majul, M.V.; Ajhuacho, R.; Dietrich, P.; Igarzabal, M.A. (2020). Heavy metal pollution and health risk assessment of soils from open dumps in the Metropolitan Area of Buenos Aires, Argentina. Environmental Monitoring and Assessment, 192(5), 291. https://doi.org/10.1007/s10661-020-8246-x.
Ogunbanjo, O.; Onawumi, O.; Gbadamosi, M.; Ogunlana, A.; Anselm, O. (2016). Chemical speciation of some heavy metals and human health risk assessment in soil around two municipal dumpsites in Sagamu, Ogun state, Nigeria. Chemical Speciation & Bioavailability, 28(1–4), 142–151. https://doi.org/10.1080/09542299.2016.1203267.
Agbeshie, A.A.; Adjei, R.; Anokye, J.; Banunle, A. (2020). Municipal waste dumpsite: Impact on soil properties and heavy metal concentrations, Sunyani, Ghana. Scientific African, 8, e00390. https://doi.org/https://doi.org/10.1016/j.sciaf.2020.e00390.
Wijesekara, S.S.R.M.D.H.R.; Mayakaduwa, S.S.; Siriwardana, A.R.; de Silva, N.; Basnayake, B.F.A.; Kawamoto, K.; Vithanage, M. (2014). Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka. Environmental Earth Sciences, 72(5), 1707–1719. https://doi.org/10.1007/s12665-014-3075-2.
Mary Joseph, A.; Snellings, R.; Nielsen, P.; Matthys, S.; De Belie, N. (2020). Pre-treatment and utilisation of municipal solid waste incineration bottom ashes towards a circular economy. Construction and Building Materials, 260, 120485. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120485.
Odularu, A.T.; Ajibade, P.A.; Onianwa, P.C. (2013). Comparative Study of Leaching of Aluminium from Aluminium, Clay, Stainless Steel, and Steel Cooking Pots. ISRN Public Health, 2013, 517601. https://doi.org/10.1155/2013/517601.
Bojórquez-Quintal, E.; Escalante-Magaña, C.; Echevarría-Machado, I.; Martínez-Estévez, M. (2017). Aluminum, a Friend or Foe of Higher Plants in Acid Soils. Frontiers in Plant Science, 8, 1-18. https://doi.org/10.3389/fpls.2017.01767.
Tang, K.H.D.; Kristanti, R.A. (2022). Bioremediation of perfluorochemicals: current state and the way forward. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-022-02694-z.
Li, C.; Tang, K.H.D. (2023). Effects of pH and Temperature on the Leaching of Di (2-Ethylhexyl) Phthalate and Di-n-butyl Phthalate from Microplastics in Simulated Marine Environment. Biointerface Research in Applied Chemistry, 13(3). https://doi.org/10.33263/BRIAC133.269.
Tang, K.H.D. (2020). Municipal Solid Waste Management in the Sarawak State of Malaysia and the Way Forward. Asian Journal of Environment & Ecology, 12(2), 38–55.
Smolders, E.; Brans, K.; Foldi, A.; Merckx, R. (1999). Cadmium fixation in soils measured by isotopic dilution. Soil Science Society of American Journal, 63. https://doi.org/10.2136/sssaj1999.03615995006300010013x.
Kubier, A.; Wilkin, R.T.; Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388.
Tang, K.H.D., Awa, S.H.; Hadibarata, T. (2020). Phytoremediation of Copper-Contaminated Water with Pistia stratiotes in Surface and Distilled Water. Water, Air, & Soil Pollution, 231(12), 573. https://doi.org/10.1007/s11270-020-04937-9.
Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. (2018). Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Science of The Total Environment, 636, 282–298. https://doi.org/10.1016/j.scitotenv.2018.04.268.
Lange, B.; van der Ent, A.; Baker, A.J.M.; Echevarria, G.; Mahy, G.; Malaisse, F.; Meerts, P.; Pourret, O.; Verbruggen, N.; Faucon, M.P. (2017). Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist, 213(2), 537–551. https://doi.org/10.1111/nph.14175.
Sun, Q.; Li, T.; Alva, A.K.; Li, Y.C. (2019). Mobility and fractionation of copper in sandy soils. Environmental Pollutants and Bioavailability, 31(1), 18–23. https://doi.org/10.1080/09542299.2018.1558114.
Li, W.B.; Yao, J.; Tao, P.P.; Guo, M.T.; Feng, X.Y.; He, Y.N.; Fang, C.R.; Shen, D.S. (2010). A comparative study on two extraction procedures in speciation of iron in municipal solid waste. Journal of Hazardous Materials, 182(1), 640–648. https://doi.org/10.1016/j.jhazmat.2010.06.080.
Guerinot, M.L.; Yi, Y. (1994). Iron: Nutritious, Noxious, and Not Readily Available. Plant Physiology, 104(3), 815–820. https://doi.org/10.1104/pp.104.3.815.
Sarkar, D.; De, D.K.; Das, R.; Mandal, B. (2014). Removal of organic matter and oxides of iron and manganese from soil influences boron adsorption in soil. Geoderma, 214–215, 213–216. https://doi.org/10.1016/j.geoderma.2013.09.009.
Rai, R.K.; Singh, V.P.; Upadhyay, A. (2017). Chapter 2 - Irrigation Project Planning. In Planning and Evaluation of Irrigation projects; Rai, R.K., Singh, V.P., Upadhyay, A., Eds.; Academic Press: Cambridge, USA, pp. 7–24. https://doi.org/10.1016/B978-0-12-811748-4.00002-9.
Holmgren, G.G.S.; Meyer, M.W.; Chaney, R.L.; Daniels, R.B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22, 335-348. https://doi.org/10.2134/jeq1993.00472425002200020015x.
Sorahan, T.; Esmen, N.A. (2004). Lung cancer mortality in UK nickel-cadmium battery workers, 1947–2000. Occupational and Environmental Medicine, 61(2), 108 LP – 116. https://doi.org/10.1136/oem.2003.009282.
Barrow, N.J. (1993). Mechanisms of Reaction of Zinc with Soil and Soil Components BT - Zinc in Soils and Plants. In Proceedings of the International Symposium on Zinc in Soils and Plants, The University of Western Australia, Australia, 27–28 September 1993; Robson, A.D., Ed.; Springer: Amsterdam, Netherlands, pp. 15–31).. https://doi.org/10.1007/978-94-011-0878-2_2.
Seniunaite, J.; Vasarevicius, S. (2017). Leaching of Copper, Lead and Zinc from Municipal Solid Waste Incineration Bottom Ash. Energy Procedia, 113, 442–449. https://doi.org/https://doi.org/10.1016/j.egypro.2017.04.036.
Contaminated Land Management and Control Guidelines No.1: Malaysian Recommended Site Screening Levels for Contaminated Land. (accessed on 1 Augusts 2022) Available online: https://www.doe.gov.my/wp-content/uploads/2021/07/Contaminated-Land-Management-and-Control-Guidelines-No-1_Malaysian-Recommended-Site-Screening-Levels-for-Contaminated-Land.pdf.
Tang, K.H.D. (2019). The Dilemma of Environmental Impact Assessment in Sarawak, Malaysia. Journal of Sustainability Science and Management, 14(3), 3–6.
Tang, K.H.D. (2020). A comparative overview of the primary Southeast Asian safety and health laws. International Journal of Workplace Health Management, 13, 601-632. https://doi.org/10.1108/IJWHM-10-2019-0132.
Tang, K.H.D. (2020). A Case Study of The Environmental Impact Assessment Legislations In Sarawak, Malaysia. Asia Pacific Journal of Energy and Environment, 7, 47–54. https://doi.org/10.18034/apjee.v7i1.273.
Syed Ismail, S.N.; Ishak, C.F.; Samah, M.A.A.; Hatta, E.M.; Wahab, A.S.A. (2015). Soil contamination from non-sanitary waste landfill in Langat water catchment area, Malaysia. Journal of Scientific Research and Reports, 7(6), 480–493.
Zaidi, E.; FahrulRazi, M.J.; Azhar, A.T.S.; Hazreek, Z.A.M.; Shakila, A.; Norshuhaila, M.S.; Omeje, M. (2017). Radionuclides (40K,232Th and238U) and Heavy Metals (Cr, Ni, Cu, Zn, As and Pb) Distribution Assessment at Renggam Landfill, Simpang Renggam, Johor, Malaysia. IOP Conference Series: Materials Science and Engineering, 226, 12070. https://doi.org/10.1088/1757-899x/226/1/012070.
Chen, W.; Li, L.; Chang, A.C.; Wu, L.; Chaney, R.L.; Smith, R. (2009). Characterizing the solid-solution partitioning coefficient and plant uptake factor of As, Cd, and Pb in California croplands. Agriculture, Ecosystems and Environment, 129, 212-220. https://doi.org/10.1016/j.agee.2008.09.001.
Grosbois, C.; Meybeck, A.; Horowitz, A.; Ficht, A. (2006). The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994–2000). Science of the Total Environment, 356. https://doi.org/10.1016/j.scitotenv.2005.01.049.
Buekers, J.; Degryse, F.; Maes, A.; Smolders, E. (2008). Modelling the effects of ageing on Cd, Zn, Ni and Cu solubility in soils using an assemblage model. European Journal of Soil Science, 59, 22-37. https://doi.org/10.1111/j.1365-2389.2008.01053.x.
Tang, K.H.D. (2019). Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons: A Review of Recent Literature. Global Journal of Civil and Environmental Engineering, 1, 33–42. https://doi.org/10.36811/gjcee.2019.110006.
SUBMITTED: 02 August 2022
ACCEPTED: 16 August 2022
PUBLISHED:
16 August 2022
SUBMITTED to ACCEPTED: 14 days
DOI:
https://doi.org/10.53623/tasp.v2i2.107