Skip to main content

Land Subsidence Analysis Using Machine Learning Algorithm Random Forest Method in DKI Jakarta

Author(s): Camelia Nur Hidayah 1 , Panca Dewi Pamungkasari 1 , Sari Ningsih 1 , Muhammad Fauzan Azhiman 1 , Joko Widodo 2 , Elfady Satya Widayaka 3
Author(s) information:
1 Universitas Nasional Faculty of Communication and Information Technology, Jakarta, Indonesia
2 Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
3 Senior Software engineer PT Motiv-research, Japan

Corresponding author

Land subsidence is an environmental phenomenon that causes the earth's surface to decline gradually or suddenly. Land subsidence occurred in DKI Jakarta due to various factors such as excessive groundwater exploitation, infrastructure loads, and geological conditions. The purpose of this study was to analyze land subsidence in DKI Jakarta and the distribution of existing land subsidence. The results were compared with previous findings using PS-InSAR. Land subsidence was predicted using the Random Forest algorithm. Random Forest, as a type of machine learning, was able to reduce noise and minimize the impact of overfitting through ensemble techniques. Researchers used four metrics, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R², and Kling-Gupta Efficiency (KGE), to assess the accuracy of the algorithm. The analysis results of land subsidence in DKI Jakarta using Random Forest aligned with the PS-InSAR method. It was observed that areas experiencing land subsidence were predominantly in North and West Jakarta compared to other regions. Furthermore, the prediction of land subsidence using the 2017–2021 dataset indicated a decrease of up to -60 mm/year.

Widodo, J.; Arief, R.; Dinanta, G.; Setyaningrum, N.; Setiyoko, A.; Putra, A.; Oktaviani, A.; Wisyanto; Santoso, E.; Hidayat, N.; Awaluddin; Kurniawan, F.; Pradono, M.H.; Razi, P.; Izumi, Y.; Sri Sumantyo, J. (2022). Time Series Land Subsidence Analysis Based on Persistent Scattered Interferometric Synthetic Aperture Radar Method of Jakarta City Region Using Terra SAR X Spaceborne Data. International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 2022, 106–113. http://doi.org/10.1109/ICRAMET56917.2022.9991211.

Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Pradhan, B.; Chen, W.; Khosravi, K.; Panahi, M.; Bin Ahmad, B.; Saro, L. (2018). Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors, 18, 2464. http://doi.org/10.3390/s18082464.

Ahmed, S.; Hiraga, Y.; Kazama, S. (2024). Land Subsidence in Bangkok Vicinity: Causes and Long-Term Trend Analysis Using InSAR and Machine Learning. Science of the Total Environment, 946, 174285. http://doi.org/10.1016/j.scitotenv.2024.174285.

Hosseinzadeh, E.; Anamaghi, S.; Behboudian, M.; Kalantari, Z. (2024). Evaluating Machine Learning-Based Approaches in Land Subsidence Susceptibility Mapping. Land, 13, 322. http://doi.org/10.3390/land13030322.

Liu, B.; Mazumder, R. (2024). Randomization Can Reduce Both Bias and Variance: A Case Study in Random Forests. http://doi.org/10.48550/arXiv.2402.12668.

Handika, R.; Widodo, J.; Pravitasari, A.E. (2024). Combined Land Subsidence Analysis in Jakarta Based on Ps-InSAR and MICMAC Methods. Jurnal Teknologi Lingkungan, 25, 137–145. http://doi.org/10.55981/jtl.2024.1125.

Maulina, S. (2021). Prediksi Penurunan Muka Tanah Terhadap Pola Konsumsi Air Bersih di DKI Jakarta Tahun 2021-2025 Menggunakan Machine Learning. Undergraduate Thesis, Universitas Bakrie, Indonesia.

Hakim, W.L.; Achmad, A.R.; Lee, C.-W. (2020). Land Subsidence Susceptibility Mapping in Jakarta Using Functional and Meta-Ensemble Machine Learning Algorithm Based on Time-Series InSAR Data. Remote Sensing, 12, 3627. http://doi.org/10.3390/rs12213627.

Khoirunisa, R.; Yuwono, B.D.; Wijaya, A.P. (2015). Analisis Penurunan Muka Tanah Kota Semarang Tahun 2015 Menggunakan Perangkat Lunak Gamit 10.5. Jurnal Geodesi Undip, 4, 341-350. http://doi.org/10.14710/jgundip.2015.9961.

Probst, P.; Wright, M.N.; Boulesteix, A.-L. (2019). Hyperparameters and Tuning Strategies for Random Forest. WIREs Data Mining and Knowledge Discovery, 9, e1301. http://doi.org/10.1002/widm.1301.

Wanto, K. (2016). Analisis Intervensi Data Deret Waktu Untuk Peramalan Pendapatan Domestik Bruto Indonesia. Undergraduate Thesis, Universitas Negeri Jakarta, Indonesia.

Apit, S.; Sunarno, D.; Djuniadi. (2024). Perbandingan Performa Model Machine Learning dalam Prediksi Suhu di Semarang. Jurnal Ilmu Teknik Elektro dan Teknologi Informasi, 12, 2770-2775. http://doi.org/10.23960/jitet.v12i3.4884.

Nazar, R. (2024). Implementasi Pemrograman Python Menggunakan Google Colab. Jurnal Informatika dan Komputer, 15, 50-56.

Lestari, E.; Astuti, I. (2022). Penerapan Random Forest Regression Untuk Memprediksi Harga Jual Rumah dan Cosine Similarity untuk Rekomendasi Rumah pada Provinsi Jawa Barat. Jurnal Ilmiah FIFO, 14, 131. http://doi.org/10.22441/fifo.2022.v14i2.003.

About this article

SUBMITTED: 19 February 2025
ACCEPTED: 26 March 2025
PUBLISHED: 28 May 2025
SUBMITTED to ACCEPTED: 35 days
DOI: https://doi.org/10.53623/gisa.v5i1.606

Cite this article
Nur Hidayah, C., Pamungkasari, P. D. ., Ningsih, S. ., Azhiman, M. F. ., Widodo, J. ., & Widayaka, E. S. . (2025). Land Subsidence Analysis Using Machine Learning Algorithm Random Forest Method in DKI Jakarta. Green Intelligent Systems and Applications, 5(1), 106–122. https://doi.org/10.53623/gisa.v5i1.606
Keywords
Accessed
3
Citations
0
Share this article