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ABSTRACT: Land subsidence is an environmental phenomenon that causes the earth's 

surface to decline gradually or suddenly. Land subsidence occurred in DKI Jakarta due to 

various factors such as excessive groundwater exploitation, infrastructure loads, and geological 

conditions. The purpose of this study was to analyze land subsidence in DKI Jakarta and the 

distribution of existing land subsidence. The results were compared with previous findings 

using PS-InSAR. Land subsidence was predicted using the Random Forest algorithm. Random 

Forest, as a type of machine learning, was able to reduce noise and minimize the impact of 

overfitting through ensemble techniques. Researchers used four metrics, Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), R², and Kling-Gupta Efficiency (KGE), to assess 

the accuracy of the algorithm. The analysis results of land subsidence in DKI Jakarta using 

Random Forest aligned with the PS-InSAR method. It was observed that areas experiencing 

land subsidence were predominantly in North and West Jakarta compared to other regions. 

Furthermore, the prediction of land subsidence using the 2017–2021 dataset indicated a 

decrease of up to -60 mm/year. 
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1. Introduction 

Land subsidence was a major hazard to land surface stability in DKI Jakarta. It occurred in 

several areas of DKI Jakarta, especially in Pantai Indah Kapuk, Marunda, Ancol (North 

Jakarta), and Kembangan (West Jakarta). On the other hand, slight land subsidence was 

observed in the Kalibaru area, Central Jakarta. Land subsidence was an environmental 

phenomenon that caused the earth's surface to decrease gradually or suddenly [1]. Land 

subsidence occurred in DKI Jakarta due to various factors such as excessive groundwater 

exploitation, infrastructure loads, and geological conditions [2]. For land subsidence 

monitoring, the widely used Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-

InSAR) technology was employed. PS-InSAR detected land surface changes through multi-

temporal radar data analysis [2]. While accurate in historical analysis, PS-InSAR had 

limitations in predicting and could not model future land subsidence patterns. To overcome 
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these limitations, machine learning approaches such as Random Forest were used to predict 

subsidence patterns based on multivariate data. 

Random Forest, as a type of machine learning, was able to reduce noise and minimize 

the impact of overfitting through ensemble techniques. Previous research compared the 

Random Forest algorithm with LightGBM and XGBoost. The results showed that Random 

Forest performed better than LightGBM and XGBoost, with values of (R² = 0.84), (KGE = 

0.89), (RMSE = 2.19), and (MAE = 1.42) [3]. In Handika et al.'s research, the Random Forest 

model demonstrated better performance, achieving a value of 0.73 compared to SVM. 

However, Random Forest had shortcomings—poor parameter tuning increased bias, so 

researchers addressed this issue with hyperparameter tuning [6]. Researchers used four 

matrices to assess the accuracy of the algorithm. RMSE calculated the square root of the mean 

square error, providing an overview of prediction error by assigning more weight to larger 

errors. The Coefficient of Determination (R²) measured how well the model explained the 

variability of the data. The value of R² ranged between 0 and 1, with values close to 1 indicating 

a good model. KGE was designed to overcome weaknesses in traditional evaluation (R²), 

considering correlation, relative bias, and variance ratio. The use of these hyperparameters 

adjusted the decision tree (n_estimators, max_features, and min_samples_leaf) by using 

worker timeouts (joblib) to ensure workers had enough time, and threading was implemented 

to optimize CPU usage. This research had the following objectives: analyzing land subsidence 

in DKI Jakarta, outlining the distribution of existing land subsidence, the cumulative land 

subsidence for the period 2017–2021 on a year-to-year basis, and reclamation areas with 

alluvial soil characteristics in DKI Jakarta. The three results of the analysis using Random 

Forest were compared with previous results using PS-InSAR. A new development was 

introduced—a prediction for 2022 with validation data from previous studies..   

2. Materials and Methods 

2.1.Random forest. 

Random Forest was an ensemble-based algorithm designed to handle large-scale and complex 

data by combining multiple independent decision trees to improve prediction accuracy [3]. In 

research [3] on the study of land subsidence in the Bangkok vicinity, Random Forest was able 

to model the non-linear relationship between driving factors and land subsidence. The study 

revealed that subsidence was increasing by more than -9.0 mm/year over the next few decades. 

The results showed that Random Forest achieved values of R² = 0.84, KGE = 0.89, RMSE = 

2.19, and MAE = 1.42. This algorithm operated on the principle of bootstrap aggregating 

(Bagging), where each original dataset was randomly sampled with replacement to form 

several subsets of data [2]. Random Forest was a method derived from the original bootstrap 

aggregation (Bagging) algorithm proposed by Breiman in 1996, which aimed at creating a set 

of trees. In Bagging, a dataset was sampled as bags that matched the size of the original dataset. 

The predictions from these trees were combined across the bags by averaging (regression) or 

polling (classification) to produce the final prediction [3]. 

Random Forest applied random feature selection to each split in the decision tree. This 

process, known as feature randomness, ensured that only a subset of features was randomly 

selected each time the tree made a split decision. By doing so, the correlation between the trees 

in the forest was reduced, making the model more stable and less dependent on specific 
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features. This approach helped mitigate overfitting compared to single decision tree methods. 

In regression with Random Forest, the final prediction was calculated as the average of all tree 

predictions, which was formulated as: 

�̂� =
1

𝑁
∑ �̂�𝑖

𝑁
𝑖=1          (1) 

Where �̂� is final prediction, 𝑁 is number of trees in random forest, and �̂�𝑖 is the prediction of 

the tree to-ⅈ.  

Formula (1) calculated regression in Random Forest by predicting the final value 

y^\hat{y}y^ as the average of all predictions made by Random Forest trees. In this research, 

the final value y^\hat{y}y^ represented the prediction of land subsidence. In the context of 

subsidence modeling, Random Forest was used to map vulnerability areas based on factors that 

influenced subsidence distribution. In research [8], Random Forest achieved an accuracy of 

more than 80% in predicting vulnerable areas, while research [3] utilized the Random Forest 

algorithm to model non-linear relationships between driving factors and land subsidence. 

Random Forest demonstrated robustness against overfitting, had the ability to handle 

missing values, and showed good model performance on large datasets. However, parameter 

tuning posed a major challenge in the application of this algorithm. If the parameter selection 

was not optimal, the model could suffer from high bias or excessive complexity. Therefore, in 

this study, hyperparameter adjustment was performed by reducing the number of trees 

(n_estimators) and limiting the maximum number of features (max_features) for division [3]. 

The construction of the Random Forest model was built by setting the number of trees 

(n_estimators) and maximum features (max_features) for each node. Once the data was 

cleaned, the dataset was split, with 80% used for training and 20% for testing. The model was 

then trained using the training data, and the predicted results were compared to the actual values 

using the following evaluation metrics: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1       (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1                     (3) 

𝑅2 = 1 −
∑(𝑦𝑖−�̂�𝑖 )2

∑(𝑦𝑖−�̅�)2                       (4) 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2        (5) 

Where 𝑛 is total number of data points, 𝑦𝑖 is actual value, �̂�𝑖 is predicted value of the model, 𝑟 

is correlation between predicted and actual values, 𝛼 is ratio between predicted and actual 

standard deviation, and 𝛽 is Ratio of average predicted to actual values.  

The above formula was used to evaluate the Random Forest prediction metrics and assess 

the accuracy of the model. The MAE metric (2) measured the average absolute error between 

the actual value (yiy_iyi) and the predicted value (y^i\hat{y}_iy^i). If the predicted subsidence 

value was small, it indicated that the model produced accurate predictions. The RMSE metric 

(3) assigned greater weight to large errors because it squared the differences, making it useful 

for detecting outliers or significant errors. The R² metric (4) measured how well the model 
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explained the variance in the target data. Its values ranged between 0 and 1, with 1 indicating 

a highly accurate model and 0 indicating that the model could not explain the variability in the 

data. The KGE metric (5) provided an overall assessment of model performance by considering 

correlation, bias, and variability. The KGE value ranged from −∞ to 1, where a value of 1 

indicated good prediction performance. After metric evaluation, if the model showed high bias 

or suboptimal performance, hyperparameter tuning was performed using RandomSearchCV 

and GridSearchCV. These two methods were used to find the best combination of parameters 

to improve the model by minimizing prediction error. If the evaluation results after tuning 

showed an increase in performance and model stability on test data, the model was considered 

ready for further analysis. 

2.2.Land subsidence. 

Land subsidence was an environmental issue of global concern. It could be caused by a 

combination of factors such as the natural compaction of sediments/rocks, loading, excessive 

groundwater extraction, and tectonic activity [7]. Previous research provided information that 

the scientist Gambolati found land subsidence was caused by fluid withdrawal. Additionally, 

research conducted in 290 major cities worldwide by Bagheri-Gavkoch showed that land 

subsidence was mostly caused by human activities (76.92%), with half (50.75%) attributed to 

water extraction [2]. 

2.3.Research location. 

The location of this research was the DKI Jakarta City area. DKI Jakarta was the capital city 

of Indonesia, situated on the coast of Java Island, with a total area of 662.33 km². Jakarta was 

a lowland area above sea level and the only city in Indonesia with a status equivalent to a 

province. The study area covered West Jakarta, East Jakarta, South Jakarta, North Jakarta, and 

Central Jakarta. Jakarta's physiography was classified within the Coastal Plain zone. 

2.4.Research focus. 

This research focused on comparing the results of the machine learning-based Random Forest 

algorithm with PS-InSAR. The objective was to analyze and compare the performance of these 

two algorithms in assessing land subsidence in DKI Jakarta. Table 1 was divided into two 

sections comparing research algorithms. The advantages of each algorithm were highlighted 

with a white mark, while the disadvantages were indicated with an orange mark. Researchers 

identified the strengths and weaknesses of the methods under study by referring to previous 

research on land subsidence that utilized various machine learning algorithms. This comparison 

was based on journal references listed in the bibliography, each marked with a corresponding 

number. After comparing the three algorithms, the researchers proposed the Random Forest 

method for land subsidence analysis due to its advantages in handling noise, preventing 

overfitting, ensuring data accuracy, improving model performance, and enhancing model 

sensitivity. However, the Random Forest model had shortcomings, particularly in parameter 

tuning, which could lead to bias in data processing. To prevent tuning parameters from causing 

bias, tree reduction was performed using RandomSearchCV and GridSearchCV 

hyperparameter tuning by adjusting n_estimatorsn\_estimatorsn_estimators, 
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max_featuresmax\_featuresmax_features, and 

min_samples_leafmin\_samples\_leafmin_samples_leaf [2, 10]. 

Table 1. Algorithm comparison. 

PARAMETER RF SVM BLR 

Noise  The ensemble technique can 

reduce noise [3, 5].  

Moderate noise tolerance 

with RBF Kernel [6]  

Susceptible to noise  

[4]  

Overfitting  Ensemble techniques can reduce 

the impact of overfitting 

individual trees[3, 5].  

Overfitting on small data if 

parameters are not well 

tuned [4, 6].  

Minimal risk of overfitting, 

model linearity limits 

complexity [4].  

Parameter  

Tunning  

Poor parameter tuning can 

increase bias [5].  

Tuning must be done 

carefully [6].  

Excellent for linear data [4]  

Data Accuracy  Excellent data accuracy on non- 

linear, linear is quite good [3, 5].  

Less than optimal on linear 

data [6]  

Efficient for small datasets 

[4]  

Mode  

Performance  

Able to handle large and complex 

data [3, 5].   

High model performance for 

non-linear data with optimal 

tuning [3, 6].  

Performance drops on 

complex datasets[4]  

Model  

Sensitivity  

Low to  

Hypeparameter [3, 5].   

Very sensitive to C and  

Gamma  

parameters [6]  

Less sensitive to C 

parameters and intensive 

tunics[4]  

2.5. Data source. 

The sample data used in this study was obtained from a journal written by Joko Widodo et al., 

entitled "Aperture Radar Method of Jakarta City Region Using TerraSAR-X Spaceborne Data." 

The dataset contained 91,987 records, which were divided into training and testing data. The 

available data included information on ID, Latitude (Lat), Longitude (Lon), Height, Height Wrt 

Dem, Sigma Height, Velocity (Vel), Sigma Velocity (Sigma Vel), Seasonal, Cumulative 

Displacement (Cumul.Disp), Coherence (Coher), Svet, Lvet, Initial (In), Final (Fin), Standard 

Deviation (Stdev), and Temporal Data. Based on these attributes, the independent variables 

consisted of Lat, Lon, Height, Height Wrt Dem, Sigma Height, Sigma Vel, Seasonal, Svet, 

Lvet, and Temporal Data, while the dependent variable was Cumul.Disp.   

2.6.Research stage. 

In the research method, several stages were carried out sequentially, as shown in Figure 1. In 

this study, the dataset consisted of two variables based on land subsidence parameters. The 

dataset contained 91,987 records, which were divided for model training and testing. The next 

stage was data preprocessing, which was necessary to ensure that the data was of high quality, 

consistent, and stable for processing by machine learning algorithms. The preprocessing stage 

included checking for data consistency, missing values, outliers, and duplicate records. After 

preprocessing, Exploratory Data Analysis (EDA) was conducted to examine the relationships 

between variables. EDA helped determine the feature and target variables related to land 

subsidence prediction. The target variable was Cumul.Disp, which was referenced as y = 

df[target]. The feature variables were defined as X = df[features], which included Height, 

Height Wrt Dem, Vel, Sigma Height, Sigma Vel, Coher, Stdev, Lvet, Svet, Seasonal, and 

Temporal_Mean. The research focus was on Cumul.Disp, which represented the cumulative 

land subsidence predicted using the associated features. 

The dataset was divided using the random sampling method with a proportion of 80:20, 

where 80% of the data (73,589 records) was used for training, and 20% (18,398 records) was 
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used for testing the model’s performance. At the modeling stage, researchers implemented a 

machine learning algorithm, namely Random Forest. The Random Forest model was built 

using Scikit-learn with random_state=42 to ensure reproducibility and n_estimators=100 to 

maintain model stability, even though it resulted in a longer computation time. After building 

the model, an evaluation matrix was applied to assess its performance. The evaluation metrics 

included RMSE, R², MAE, and KGE. If the R² value was close to 1 and MAE/RMSE was low, 

the model was considered to have good performance. Additionally, if KGE was close to 1, it 

indicated optimal model efficiency. If the initial metric evaluation revealed high bias or 

suboptimal performance, hyperparameter tuning was performed using RandomSearchCV and 

GridSearchCV. These methods focused on reducing the number of trees while utilizing joblib 

to manage computation time efficiently. The objective was to find the best combination of 

parameters to improve the model by minimizing prediction error. After hyperparameter tuning, 

metric evaluation was conducted again, followed by visualization of the land subsidence 

prediction results. Finally, the results were compared between the Random Forest model and 

PS-InSAR, and explanations were provided regarding the findings. 

 

Figure 1. Research stages. 

3. Results and Discussion 

3.1. Data prepocessing. 

In this preprocessing stage, the process of data cleansing was carried out to ensure that the 

dataset was free from missing values, duplicates, and outliers. Although the data from the 

original source was available, it needed to be thoroughly checked before use. The purpose of 

preprocessing was to improve data quality and enhance the accuracy and reliability of the 

analysis results. Therefore, preprocessing was performed to ensure that the data was clean, 

consistent, and ready for analysis (Table 2). 

Table 2. Stages of preprocessing. 

Prepocessing Stage 

Duplicate There are the same columns in the temporal column, namely HH and HH1, both of these columns 

have temporal values removed one of them for accurate analysis results. 

Missing Value  There are no missing values even rechecking the missing values that are not visible. 

Outlier Outliers that have been cleaned using the Interquartile Range method which takes the 

difference between the third quartile and the first quartile. Data below and above the upper 

limit are considered outliers. To keep the data distribution representative, outlier values were 

replaced with the media value of the attribute in question. This approach was chosen because 

the media is more robust to outliers than the mean.   
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However, some outliers remain visible in the visualization as this method does not completely 

remove extreme values but replaces them with the median of the feature in question to maintain the 

integrity of the data distribution. 

Consident Data Consistency checks were performed on the numerical data. Data consistency was verified by 

ensuring the absence of double values, unrealistic numerical ranges, and inconsistencies in 

units of measurement. 

3.2.Ground subsidence analysis. 

Exploratory Data Analysis (EDA) was conducted as an initial analysis of the dataset to better 

understand its key characteristics, patterns, and relationships before proceeding with further 

modeling. This EDA helped identify the datasets that were analyzed further, as explained 

below: 

 
Figure 2. Relationship between variables. 

Figure 2 shows that the relationship between temporal variables was very strong, as 

indicated by a solid red color. This suggested that the temporal measurement values had a 

consistent pattern, making temporal variables effective for time trend analysis. The variables 

VEL, HEIGHT, and CUMUL.DISP exhibited significant positive correlations with some 

temporal variables, indicating a strong relationship between soil characteristics and temporal 

measurements. In contrast, categorical variables such as SEASONAL, LVET, and SVET had 

low correlations with other variables, suggesting a more independent relationship.  

Table 3. Random forest model evaluation. 

Model Evaluation 

No Training Data Testing Data 

R2 1.000 1.000 

MSE 0.0001 0.0002 

RMSE 0.0080 0.0132 

KGE 1.000 1.000 
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In Table 3, the model demonstrated very high performance, with R2=1.000 for both 

training and testing data. Although this result indicated an excellent fit, a perfectly high R2 

value suggested overfitting, meaning the model fit itself too closely to the training data and lost 

its ability to generalize to new data. To reduce the risk of overfitting, additional validation was 

conducted to ensure accuracy in a broader scenario. Since the prediction results were extremely 

high, reaching 1.000, further parameter tuning was performed using RandomSearchCV and 

GridSearchCV. This process aimed to find the optimal combination of parameters, ensuring 

that the model was not only accurate on training data but also capable of making reliable 

predictions on new data. RandomSearchCV was used to perform a broad search across a wide 

range of parameters, while GridSearchCV fine-tuned the parameters based on the best results 

from RandomSearchCV. 

 
Figure 3. Parameter tuning. 

Figure 3 is based on the results of the parameter search using GridSearchCV and 

RandomizedSearchCV. It was found that GridSearchCV provided more optimal results 

compared to RandomizedSearchCV. The best parameters identified were n_estimators = 200, 

max_features = 'sqrt', and min_samples_leaf = 2, which produced the highest Mean Test Score 

and were more consistent than other parameter combinations. When visualizing the mean test 

score, it was observed that GridSearchCV had a more concentrated distribution of scores at 

high values, while RandomizedSearchCV exhibited greater variability, including some lower 

results. 

Additionally, the relationship between n_estimators and the Mean Test Score showed 

that the model performance reached an optimal value at n_estimators around 200–300. Beyond 

this point, adding more estimators did not lead to significant improvement. Furthermore, the 

3D scatter plot analysis revealed that the parameter combinations tested by GridSearchCV were 

more concentrated at the optimal point, whereas RandomizedSearchCV demonstrated a wider 

spread. This finding indicated that GridSearchCV was more effective in identifying the best 

parameters, while RandomizedSearchCV was more exploratory but less stable in its results. 

The Mean Test Score distribution showed a wider variety of values in 

RandomizedSearchCV, which resulted in greater variation, whereas GridSearchCV produced 

a more concentrated distribution around the highest values, indicating higher stability. Based 

on this analysis, the best model selected was the one from GridSearchCV, with the optimal 

parameters identified. This model was then used for predictions on new data. Overall, the 

parameter tuning results demonstrated that proper parameter selection had a significant impact 

on model performance. GridSearchCV proved to be more reliable in producing models with 
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higher accuracy and better stability compared to RandomizedSearchCV. Following this 

parameter tuning, the model was re-evaluated, as shown in Table 4. 

 

Table 4. Modeling evaluation after parameter tuning. 

 Before Tuning  After Tuning  

R2 (Training) 1.000 0.9999 

R2 (Testing) 1.000 0.9995 

MSE(Training) 0.0001 0.0189 

MSE (Testing) 0.0002 0.1098 

RMSE(Training) 0.0080 0.1376 

RMSE(Testing) 0.0132 0.3314 

KGE(Training) 1.000 0.9992 

KGE(Testing) 1.000 0.9986 

Table 4 presents the model evaluation results after parameter tuning, showing a slight 

change in performance. The R² value, which previously reached 1.000 for both training and 

testing data, decreased slightly to 0.9999 for training and 0.9995 for testing, still indicating 

very high accuracy. Additionally, the Mean Squared Error (MSE) increased, particularly in 

training data, from 0.0001 to 0.0189, and in testing data, from 0.0002 to 0.1098. A similar trend 

was observed for the Root Mean Squared Error (RMSE), which rose from 0.0080 to 0.1376 in 

training and from 0.0132 to 0.3314 in testing. However, the Kling-Gupta Efficiency (KGE) 

value remained high, with a slight decline from 1.000 to 0.9992 for training and from 1.000 to 

0.9986 for testing, indicating that the model still maintained a strong balance between 

correlation, bias, and prediction variability. These changes demonstrate that parameter tuning 

helped mitigate overfitting by making the model less perfect in fitting the training data. 

Although the error increased, the model became more realistic and gained better generalization 

ability for new data. Overall, parameter tuning enhanced model balance while still maintaining 

very high performance. 

 
Figure 4. Scatter plot of land subsidence. 
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The scatter plot visualizes land subsidence and surface changes across DKI Jakarta. 

Areas with significant subsidence are represented in dark blue to bluish-green, indicating 

negative velocity values. In contrast, green and light yellow regions signify stable areas with 

minimal or no subsidence. The most affected areas are North Jakarta and West Jakarta, where 

substantial subsidence is observed. Meanwhile, Central Jakarta and South Jakarta remain 

relatively stable. Additionally, certain areas exhibit positive velocity values, indicating a slight 

increase in elevation. 

 
Figure 5. Land subsidence map. 

Figure 5 is an area with subsidence in DKI Jakarta where the data is filtered based on 

geographic coordinates covering the DKI Jakarta area with a latitude range between -6.36 to -

6.08 and longitude between 106.48 to 107.00. The data used includes subsidence velocity 

(VEL) and cumulative displacement visualized in an interactive map using folium. Each map 

point is assigned a color and size based on the subsidence velocity and cumulative 

displacement. Red indicates subsidence velocity of more than 5 mm/year while blue indicates 

subsidence velocity of less than 5 mm/year. The marker size is proportional to the cumulative 

displacement value using a radius scale = max (5, min (CUMUL.DISP./5.30)) to limit the size 

to remain visible on the map.   

The orange and red areas show a significant level of decline in North Jakarta around 

Penjaringan, Tanjung Priok, Ancol, Cilincing, Kelapa Gading, Sunter, Pantai Indah Kapuk, 

and other coastal areas show a significant decline as well as the surrounding areas compared to 

the South. West Jakarta and Central Jakarta with areas such as Kebon Jeruk, Palmerah, Tanjung 

Duren, Mangga Besar show a significant decline as well but not as dense as north Jakarta. The 

central Jakarta area has some decline around Gondangdia and Cikini. The southern and eastern 
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regions have a lower decline such as Cililitan, Ujung Menteng, Kuningan and around Senayan. 

These coastal areas show a more significant decline than the South. Central Jakarta itself has 

excessive water use, while north Jakarta has dominant geological factors due to compaction. 

Regarding the east Jakarta area, South Jakarta shows land surface stability with a slight decline 

compared to north Jakarta and central Jakarta. The north Jakarta area is the top priority for 

mitigating the risk of land subsidence. 

 
Figure 6. Height reduction area. 

Figure 6 illustrates the pattern of accumulated land subsidence at the study site. The first 

area experienced a total cumulative subsidence of 680.55 mm from 2017 to 2021, with an 

average subsidence rate of 2.70 mm/year and data coherence of 0.98. Similarly, the second area 

recorded a total cumulative subsidence of 678.98 mm, with an average rate of 2.70 mm/year 

and a coherence value of 0.98. Both locations exhibited the most significant subsidence, 

showing an exponential increase after 2019. However, in the second area, land subsidence 

stabilized until 2021, though the decline was less severe compared to the first location. 

Figure 7 shows that the area with significant subsidence is expanding, especially in North 

Jakarta and some areas in coastal Jakarta. In 2017, the color distribution shows that subsidence 

was still small and focused on North Jakarta but unevenly distributed. In 2018, there was an 

increase in the intensity of the blue color, indicating that the increase in subsidence was 

becoming more pronounced in parts of North Jakarta and widespread in other parts. In 2019 

there was a wider distribution of subsidence with increasing intensity, especially in North 

Jakarta and West Jakarta, indicating more extreme subsidence above 20mm/year. In 2020, there 

was a slight increase in the area that experienced a significant decline, some points experienced 

a decline of more than -30mm / year. And in 2021 shows a more extreme decline, especially in 

coastal areas with several points experiencing a decline of more than -40 mm / year in North 

Jakarta and West Jakarta more.   
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Figure 7. Scatter plot for 2017-2021. 

Figure 8 shows that the red color indicated areas with lower elevations, which were 

associated with reclamation areas, while the blue color represented areas with higher 

elevations, consisting of alluvial soils or naturally elevated land. North Jakarta predominantly 
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displayed red coloration, but some blue areas were still present, indicating a division between 

reclaimed land and alluvial terrain. South and Central Jakarta exhibited a combination of red 

and blue. However, low elevation did not always indicate reclamation, as Central and South 

Jakarta were not reclaimed but still had low-lying areas. North Jakarta showed a denser 

concentration of reclamation.    

 
Figure 8. Map of reclaimed and alluvial areas. 

3.3.Result comparison. 

In this research, land subsidence predictions using the Random Forest method were compared 

with the PS-InSAR method. Table 5 below presents a comparison of the results obtained from 

both methods.  

Table 5. PS-InSAR and random forest results comparison table. 

 PS-InSAR Random Forest 

Region Highest decline  North Jakarta, West Jakarta, and 

Central Jakarta  
North Jakarta, West Jakarta, 

and Central Jakarta   

Lowest Decline Region  South  Jakarta,  East  

Jakarta  

South  Jakarta,  

East Jakarta  

Area Reklamation North Jakarta  North Jakarta  

Alluvial Region  South Jakarta   South Jakarta  

 

In Table 5, the PS-InSAR method indicates that land subsidence occurred in several areas 

of DKI Jakarta, particularly in North Jakarta (Pantai Indah Kapuk, Marunda, Ancol) and West 

Jakarta (Kembangan). Additionally, slight land subsidence was observed in the Kalibaru area, 

Central Jakarta. With the Random Forest method, significant subsidence was also detected in 

North Jakarta, particularly in Penjaringan, Tanjung Priok, Ancol, Cilincing, Kelapa Gading, 
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Sunter, Pantai Indah Kapuk, and coastal areas. In West and Central Jakarta, areas such as 

Kebon Jeruk, Palmerah, Tanjung Duren, and Mangga Besar also experienced considerable 

subsidence, though not as severe as in North Jakarta. In Central Jakarta, subsidence was 

observed in Gondangdia and Cikini. Meanwhile, the southern and eastern regions remained 

more stable. The analysis of both methods suggests that North Jakarta experienced the most 

significant subsidence, primarily due to geological conditions. The PS-InSAR method 

highlights that subsidence is more pronounced in reclamation areas such as Pantai Indah 

Kapuk, compared to regions with alluvial soil. Similarly, the Random Forest method supports 

the finding that North Jakarta is subsiding at a faster rate due to the instability of reclaimed 

land. Areas with alluvial soil exhibit slower subsidence compared to reclaimed areas, as they 

possess greater stability. 

3.4.Predicted land subsidence 2022. 

 
Figure 9. 2022 Prediction map. 

Figure 9 presents a visualization of the land subsidence distribution map, where the red 

color indicates areas experiencing significant subsidence. The affected areas include Pantai 

Indah Kapuk, Tanjung Priok, and Cilincing, which continue to experience considerable 

subsidence. A small portion of the area around Pluit and the reclamation zone has shown a 

smaller decline compared to previous observations. Meanwhile, areas near the Central Jakarta 

border, such as Sunter and parts of Kemayoran, display more varied colors, suggesting that 

land changes in these regions are more balanced. 

The land subsidence prediction results in Figure 10 indicate that areas in solid blue 

exhibit a decrease of up to -60 mm/year. A significant increase in land subsidence is observed 

in several parts of North Jakarta. Conversely, some areas marked in solid red indicate an 

increase in land surface elevation of more than 60 mm/year. In general, North Jakarta 

experiences dominant geological factors contributing to subsidence, primarily due to 

compaction. According to the study by Rendi Handika et al., titled "Combined Land Subsidence 

Analysis in Jakarta Based on PS-InSAR and MICMAC Methods," land subsidence in DKI 

Jakarta is estimated at approximately -57.1 mm/year.  
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Figure 10. Scatter plot of 2022 predictions. 

Table 6. Result score error. 

Score Error Results: Predicted 2022 Decline 

R2 2.90 mm/tahun 

MAE 08.41 mm/tahun 

RMSE -1.79 

The validation evaluation in Table 6, using R², shows that the average prediction deviates 

by approximately 2.90 mm/year from the actual data. The MAE result is 8.41 mm/year, 

indicating a relatively small prediction error, as the impact of extreme values has been 

minimized. However, the RMSE value is negative, suggesting that the prediction model 

requires further adjustments to improve accuracy and align more closely with the MICMAC 

data.  

Table 7. 2022 Prediction modeling evaluation. 

No Training Data Testing Data 

R2 0.9999 1.000 

MSE 0.0349 0.0349 

RMSE 0.1868 0.0997 

KGE 0.9996 0.9993 

Overall, the model evaluation in Table 7, using the 2022 prediction data, shows an R² 

value of 1.0000, indicating that the model can explain almost all the variance in the data. The 

high Kling-Gupta Efficiency (KGE) value further confirms a strong correlation between the 

model and the observed data. Additionally, the RMSE and MSE values demonstrate that the 

prediction error in the training data is very small. The slightly lower error in the testing data 

compared to the training data suggests that the model maintains high accuracy and 

generalizability.   
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4. Conclusions 

The analysis of land subsidence in DKI Jakarta using the Random Forest method aligns with 

the results obtained from the PS-InSAR method. Both approaches indicate that land subsidence 

is most prominent in North and West Jakarta. Furthermore, the Random Forest method supports 

the finding that North Jakarta is experiencing accelerated land subsidence due to the unstable 

nature of reclaimed land. In contrast, areas with alluvial soil characteristics experience slower 

subsidence, as they provide greater stability. Beyond analysis, the land subsidence prediction 

using the 2017–2021 dataset indicates a decline of up to -60 mm/year. Validation against 

findings from a study by Rendi Handika et al., titled "Combination of Land Subsidence 

Analysis in Jakarta Based on PS-InSAR and MICMAC Methods," shows that land subsidence 

in DKI Jakarta is approximately -57.1 mm/year. The evaluation using R² reveals that the 

average prediction differs by about 2.90 mm/year from actual data. The MAE result of 8.41 

mm/year suggests a relatively small prediction error, as the influence of extreme values has 

been minimized. However, the RMSE value is negative, indicating that the prediction model 

requires further refinement to improve accuracy in alignment with MICMAC data. For future 

research, a more in-depth investigation of critical areas, particularly North Jakarta, is 

recommended. This could be achieved by comparing prediction results with direct observations 

from satellite imagery or in-situ measurements to enhance model validation and reliability. 
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