The rapid pace of urbanization and development has led to an increasing global concern over polycyclic aromatic hydrocarbons (PAHs) due to their persistent and widespread presence in the environment, posing significant threats to ecosystems and human health. PAHs originate from both natural and human-made sources and can be categorized based on their origin into pyrogenic, petrogenic, and biogenic products. Upon entering the environment, PAHs undergo various chemical and biological transformations, and their movement occurs through processes such as air-to-soil and soil-to-air transport. Composting, a green and cost-effective technology, offers a promising solution for PAH remediation. This process, which includes mesophilic, thermophilic, cooling, and maturing stages, can yield compost that is useful as fertilizer and soil amendment in agriculture. The success of composting depends on factors such as substrate bioavailability, oxygen levels, nutrient supply, and environmental conditions. While composting has shown effectiveness in reducing PAH levels, it is not without challenges, including the risk of weed infestation, greenhouse gas emissions, and odor pollution. The main obstacles in PAH remediation today are the limited bioaccessibility of PAHs and the insufficient focus on the formation of oxygenated PAHs during the process. Future research should address these challenges, particularly by improving PAH bioaccessibility and mitigating issues related to odor and greenhouse gas emissions.
Femi-Oloye, O.P.; Sutton, R.T.; Gordon, H.D.; Ain Das, A.; Morenikeji, G.O.; Odorisio, M.K.; Francestscu, O.D.; Myers, R.L.; Oloye, F.F. (2024). An Assessment of Polycyclic Aromatic Hydrocarbons Using Estimation Programs. Toxics, 12, 592. https://doi.org/10.3390/toxics12080592.
Mogashane, T.M.; Mokoena, L.; Tshilongo, J. (2024). A Review on Recent Developments in the Extraction and Identification of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Water, 16, 2520. https://doi.org/10.3390/w16172520.
Tran, H.T.; Lin, C.; Bui, X.T.; Ngo, H.H.; Cheruiyot, N.K.; Hoang, H.G.; Vu, C.T. (2021). Aerobic composting remediation of petroleum hydrocarbon-contaminated soil: Current and future perspectives. Science of The Total Environment, 753, 142250. https://doi.org/10.1016/j.scitotenv.2020.142250.
Kästner, M.; Miltner, A. (2016). Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Applied Microbiology and Biotechnology, 100, 3433‒3449. https://doi.org/10.1007/s00253-016-7378-y.
Abdel-Shafy, H.I.; Mansour, M.S.M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107‒123. https://doi.org/10.1016/J.EJPE.2015.03.011.
Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. (2020). Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Frontiers in Microbiology, 11, 2675. https://doi.org/10.3389/fmicb.2020.562813.
Rachwał, M.; Magiera, T.; Wawer, M. (2015). Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere, 138, 863‒873. https://doi.org/10.1016/j.chemosphere.2014.11.077.
Campos, I.; Abrantes, N. (2021). Forest fires as drivers of contamination of polycyclic aromatic hydrocarbons to the terrestrial and aquatic ecosystems. Current Opinion in Environmental Science & Health, 24, 100293. https://doi.org/10.1016/j.coesh.2021.100293.
Adly, H.M.; Saleh, S.A.K. (2021). Evaluation of Carcinogenic Polyaromatic Hydrocarbon Levels in Airborne Particulates Associated with Long-Term Exposure throughout the COVID-19 Pandemic in Makkah, Saudi Arabia. International Journal of Environmental Research and Public Health, 18, 12745. https://doi.org/10.3390/ijerph182312745.
Semenov, M.Y.; Marinaite, I.I.; Silaev, A.V.; Begunova, L.A. (2023). Composition, Concentration and Origin of Polycyclic Aromatic Hydrocarbons in Waters and Bottom Sediments of Lake Baikal and Its Tributaries. Water, 15, 2324. https://doi.org/10.3390/w15132324.
Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. (2020). Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Frontiers in Microbiology, 11, 562813. https://doi.org/10.3389/fmicb.2020.562813.
Davletgildeeva, A.T.; Kuznetsov, N.A. (2024). Bioremediation of Polycyclic Aromatic Hydrocarbons by Means of Bacteria and Bacterial Enzymes. Microorganisms, 12, 1814. https://doi.org/10.3390/microorganisms12091814.
Tian, Y.; Wang, R.; Ji, M.; Tian, R.; Wang, R.; Zhang, B.; Wang, S.; Liu, L. (2024). The Degradation of Polycyclic Aromatic Hydrocarbons by Biological Electrochemical System: A Mini-Review. Water, 16, 2424. https://doi.org/10.3390/w16172424.
Wang, C.; Wu, S.; Zhou, S.; Shi, Y.; Song, J. (2017). Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Soils: A Review. Pedosphere, 27, 17‒26. https://doi.org/10.1016/s1002-0160(17)60293-5.
Li, C.; Zhang, X.; Wang, X.; Zhang, X.; Liu, S.; Yuan, T.; Qu, W.; Zhang, Y. (2022). Distribution Characteristics and Potential Risks of Polycyclic Aromatic Hydrocarbon (PAH) Pollution at a Typical Industrial Legacy Site in Tianjin, North China. Land, 11, 1806. https://doi.org/10.3390/land11101806.
Pham, C.-T.; Boongla, Y.; Nghiem, T.-D.; Le, H.-T.; Tang, N.; Toriba, A.; Hayakawa, K. (2019). Emission Characteristics of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons from Open Burning of Rice Straw in the North of Vietnam. International Journal of Environmental Research and Public Health, 16, 2343. https://doi.org/10.3390/ijerph16132343.
Lau, E. von; Gan, S.; Ng, H.K. (2012). Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Soils from Five Different Locations in Klang Valley, Malaysia. Bulletin of Environmental Contamination and Toxicology, 88, 741‒746. https://doi.org/10.1007/s00128-012-0527-9.
Mohd Radzi, N.A.S.; Abu Bakar, N.K.; Emenike, C.U.; Abas, M.R. (2015). Polycyclic Aromatic Hydrocarbons (PAHs): Contamination Level and Risk Assessment in Urban Areas, Kuala Lumpur, Malaysia. New Pub: Balaban, 57, 171‒190. https://doi.org/10.1080/19443994.2015.1021103.
Keshavarzifard, M.; Zakaria, M.P.; Shau Hwai, T.; Mohamat Yusuff, F.F.; Mustafa, S.; Vaezzadeh, V.; Magam, S.M.; Masood, N.; Alkhadher, S.A.A.; Abootalebi-Jahromi, F. (2014). Baseline Distributions and Sources of Polycyclic Aromatic Hydrocarbons (PAHs) in the Surface Sediments from the Prai and Malacca Rivers, Peninsular Malaysia. Marine Pollution Bulletin, 88, 366‒372. https://doi.org/10.1016/j.marpolbul.2014.08.014.
Retnam, A.; Zakaria, M.P.; Juahir, H.; Aris, A.Z.; Zali, M.A.; Kasim, M.F. (2013). Chemometric Techniques in Distribution, Characterisation and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Aquaculture Sediments in Malaysia. Marine Pollution Bulletin, 69, 55‒66. https://doi.org/10.1016/j.marpolbul.2013.01.009.
Vaezzadeh, V.; Zakaria, M.P.; Shau-Hwai, T.; Ibrahim, Z.Z.; Mustafa, S.; Keshavarzifard, M.; Magam, S.M.; Alkhadher, S.A.A. (2015). Source Type Evaluation of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments from the Muar River and Pulau Merambong, Peninsular Malaysia. Environment Forensics, 16, 135‒142. https://doi.org/10.1080/15275922.2015.1022839.
Leech, C.; Tighe, M.K.; Pereg, L.; Winter, G.; McMillan, M.; Esmaeili, A.; Wilson, S.C. (2020). Bioaccessibility Constrains the Co-Composting Bioremediation of Field Aged PAH Contaminated Soils. International Biodeterioration & Biodegradation, 149, 104922. https://doi.org/10.1016/j.ibiod.2020.104922.
Medina, R.; Fernández-González, A.J.; García-Rodríguez, F.M.; Villadas, P.J.; Rosso, J.A.; Fernández-López, M.; del Panno, M.T. (2020). Exploring the Effect of Composting Technologies on the Recovery of Hydrocarbon Contaminated Soil Post Chemical Oxidative Treatment. Applied Soil Ecology, 150, 103459. https://doi.org/10.1016/j.apsoil.2019.103459.
Cao, W.; Yuan, J.; Geng, S.; Zou, J.; Dou, J.; Fan, F. (2023). Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons: Sources, Quantification, Incidence, Toxicity, and Fate in Soil—A Review Study. Processes, 11, 52. https://doi.org/10.3390/pr11010052.
Sayara, T.; Sarrà, M.; Sánchez, A. (2010). Effects of Compost Stability and Contaminant Concentration on the Bioremediation of PAHs-Contaminated Soil through Composting. Journal of Hazardous Materials, 179, 999‒1006. https://doi.org/10.1016/j.jhazmat.2010.03.104.
Han, X.; Hu, H.; Shi, X.; Zhang, L.; He, J. (2017). Effects of Different Agricultural Wastes on the Dissipation of PAHs and the PAH-Degrading Genes in a PAH-Contaminated Soil. Chemosphere, 172, 286‒293. https://doi.org/10.1016/j.chemosphere.2017.01.012.
Li, X.; Zhang, S.; Guo, R.; Xiao, X.; Liu, B.; Mahmoud, R.K.; Abukhadra, M.R.; Qu, R.; Wang, Z. (2024). Transformation and Degradation of PAH Mixture in Contaminated Sites: Clarifying Their Interactions with Native Soil Organisms. Toxics, 12, 361. https://doi.org/10.3390/toxics12050361.
Lukić, B.; Huguenot, D.; Panico, A.; Fabbricino, M.; van Hullebusch, E.D.; Esposito, G. (2016). Importance of Organic Amendment Characteristics on Bioremediation of PAH-Contaminated Soil. Environmental Science and Pollution Research, 23, 15041‒15052. https://doi.org/10.1007/s11356-016-6635-z.
Plaza, C.; Xing, B.; Fernández, J.M.; Senesi, N.; Polo, A. (2009). Binding of Polycyclic Aromatic Hydrocarbons by Humic Acids Formed During Composting. Environmental Pollution, 157, 257–263. https://doi.org/10.1016/j.envpol.2008.07.016.
Staszel, K.; Lasota, J.; Błońska, E. (2022). Soil Organic Matter Fractions in Relation to Root Characteristics of Different Tree Species in Altitude Gradient of Temperate Forest in Carpathian Mountains. Forests, 13, 1656. https://doi.org/10.3390/f13101656.
Li, Y.; Li, Y.; Zhang, Y.; Wu, B.; Zhou, D.; Peng, H.; Li, F.; Wu, M. (2024). Conversion of Natural Soil to Paddy Promotes Soil Organic Matter Degradation in Small-Particle Fractions: δ13C and Lipid Biomarker Evidence. Agronomy, 14, 818. https://doi.org/10.3390/agronomy14040818.
Vaverková, M.D.; Adamcová, D.; Winkler, J.; Koda, E.; Petrželová, L.; Maxianová, A. (2020). Alternative Method of Composting on a Reclaimed Municipal Waste Landfill in Accordance with the Circular Economy: Benefits and Risks. Science of The Total Environment, 723, 137971. https://doi.org/10.1016/j.scitotenv.2020.137971.
Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. (2020). Waste Management Through Composting: Challenges and Potentials. Sustainability, 12, 4456. https://doi.org/10.3390/su12114456.
Epelde, L.; Jauregi, L.; Urra, J.; Ibarretxe, L.; Romo, J.; Goikoetxea, I.; Garbisu, C. (2018). Characterization of Composted Organic Amendments for Agricultural Use. Frontiers in Sustainable Food Systems, 2, 44. https://doi.org/10.3389/fsufs.2018.00044
Ahmed, T.; Noman, M.; Qi, Y.; Shahid, M.; Hussain, S.; Masood, H.A.; Xu, L.; Ali, H.M.; Negm, S.; El-Kott, A.F.; et al. (2023). Fertilization of Microbial Composts: A Technology for Improving Stress Resilience in Plants. Plants, 12, 3550. https://doi.org/10.3390/plants12203550.
Yao, X.; Wang, X.; Zheng, S.; Zhao, H.; Ju, J.; Wang, C. (2024). Research on Composting of Garden Waste and Its Application in Cultivation Substrates. Sustainability, 16, 8216. https://doi.org/10.3390/su16188216
Yin, Y.; Yang, C.; Li, M.; Zheng, Y.; Ge, C.; Gu, J.; Li, H.; Duan, M.; Wang, X.; Chen, R. (2021). Research Progress and Prospects for Using Biochar to Mitigate Greenhouse Gas Emissions During Composting: A Review. Science of The Total Environment, 798, 149294. https://doi.org/10.1016/j.scitotenv.2021.149294.
Yasmin, N.; Jamuda, M.; Panda, A.K.; Samal, K.; Nayak, J.K. (2022). Emission of Greenhouse Gases (GHGs) During Composting and Vermicomposting: Measurement, Mitigation, and Perspectives. Energy Nexus, 7, 100092. https://doi.org/10.1016/j.nexus.2022.100092.
Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Wang, J.; Deng, Y.; Liu, Y.; Peng, B. (2018). The Potential Impact on the Biodegradation of Organic Pollutants from Composting Technology for Soil Remediation. Waste Management, 72, 138–149. https://doi.org/10.1016/j.wasman.2017.11.032.
Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.I. (2017). Composting Technology in Waste Stabilization: On the Methods, Challenges and Future Prospects. Journal of Environmental Management, 190, 140–157. https://doi.org/10.1016/j.jenvman.2016.12.051.
Yaman, C. (2024). A Review on the Process of Greenhouse Gas Inventory Preparation and Proposed Mitigation Measures for Reducing Carbon Footprint. Gases, 4, 18–40. https://doi.org/10.3390/gases4010002.
Clavier, C.; Meftah, M.; Sarkissian, A.; Romand, F.; Hembise Fanton d’Andon, O.; Mangin, A.; Bekki, S.; Dahoo, P.-R.; Galopeau, P.; Lefèvre, F.; et al. (2024). Assessing Greenhouse Gas Monitoring Capabilities Using SolAtmos End-to-End Simulator: Application to the Uvsq-Sat NG Mission. Remote Sensing, 16, 1442. https://doi.org/10.3390/rs16081442.
SUBMITTED: 04 September 2024
ACCEPTED: 24 October 2024
PUBLISHED:
27 October 2024
SUBMITTED to ACCEPTED: 50 days
DOI:
https://doi.org/10.53623/tasp.v4i2.490