Skip to main content

Assessing the Impact of Pharmaceutical Contamination in Malaysian Groundwater: Risks, Modelling, and Remediation Strategies

Author(s): Michael Lie 1 , Rubiyatno 2 , Faisal Saud Binhudayb 3 , Nguyen Thi Thanh Thao 4 , Risky Ayu Kristanti 5
Author(s) information:
1 Envirotech Engineering, Kuala Lumpur, 59200 Malaysia
2 Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
3 Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
4 Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
5 Research Center for Oceanography, National Research and Innovation Agency (BRIN), Pasir Putih I, Ancol, Jakarta, 14430 Indonesia

Corresponding author

Pharmaceuticals in Malaysia’s groundwater are a growing concern as they can potentially affect the environment and human health negatively. Pharmaceuticals are found in abundance in groundwater from sources such as septic tanks, leachates from landfills, wastewater effluents from pharmaceutical-related industries, medical institutions, wastewater treatment plants, and households, agriculture runoff and leakage of effluent wastes in Malaysia. Pharmaceutical contaminant usually travels through advection and dispersion from waterways or soil into the groundwater. The mathematical model of the advection-dispersion equation and enzyme-linked immunosorbent assay (ELISA) are analysed for the prediction of movement and concentration of pharmaceuticals.  Furthermore, the evolution of pharmaceuticals in the environment, living organisms and human health is assessed. Pharmaceuticals have found their way into the food chain and exhibit toxicity and hazard to aquatic ecosystems. However, the toxicity of pharmaceuticals to humans is still not yet much to be researched although strong evidence of possible negative consequences. Moreover, remediation technologies such as activated carbon adsorption, activated sludge, anaerobic treatment and advanced oxidation process are discussed for the mitigation of pharmaceuticals contamination.

Hejna, M.; Kapuścińska, D.; Aksmann, A. (2022). Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. International Journal of Environmental Research and Public Health, 19, 7717. https://doi.org/10.3390/ijerph19137717.

Manoiu, V.-M.; Kubiak-Wójcicka, K.; Craciun, A.-I.; Akman, Ç.; Akman, E. (2022). Water Quality and Water Pollution in Time of COVID-19: Positive and Negative Repercussions. Water, 14, 1124. https://doi.org/10.3390/w14071124.

Global drug spending to hit $1.4 trillion in 2020: IMS. (accessed on 12 December 2023) Available online: https://www.reuters.com/article/idUSKCN0T70GO/.

Muhamad Khair, N.K.; Lee, K.E.; Mokhtar, M. (2021). Community-Based Monitoring in the New Normal: A Strategy for Tackling the COVID-19 Pandemic in Malaysia. International Journal of Environmental Research and Public Health, 18, 6712. https://doi.org/10.3390/ijerph18136712.

Malaysian Statistics on Medicine 2015-2016. (accessed on 12 December 2023) Available online: https://www.pharmacy.gov.my/v2/sites/default/files/document-upload/malaysian-statistics-medicines-2015-2016.pdf.

Kura, N.U.; Ramli, M.F.; Sulaiman, W.N.A.; Ibrahim, S.; Aris, A.Z.; Mustapha, A. (2013). Evaluation of Factors Influencing the Groundwater Chemistry in a Small Tropical Island of Malaysia. International Journal of Environmental Research and Public Health, 10, 1861‒1881. https://doi.org/10.3390/ijerph10051861.

Espíndola, J.C.; Scaccia, N.; Barbosa Segundo, I.; Diniz, D.d.S.; Diniz, J.U.; Mierzwa, J.C. (2024). Evaluation of the Pathway of Contaminants in the Environment: A Case Study of Different Aquatic Environmental Compartments. Sustainability, 16, 3927. https://doi.org/10.3390/su16103927.

Khan, A.H.A.; Barros, R. (2023). Pharmaceuticals in Water: Risks to Aquatic Life and Remediation Strategies. Hydrobiology, 2, 395‒409. https://doi.org/10.3390/hydrobiology2020026.

Ślósarczyk, K.; Jakóbczyk-Karpierz, S.; Różkowski, J.; Witkowski, A.J. (2021)Occurrence of Pharmaceuticals and Personal Care Products in the Water Environment of Poland: A Review. Water, 13, 2283. https://doi.org/10.3390/w13162283.

Ariffin, M.; Zakili, T.S.T. (2019). Household Pharmaceutical Waste Disposal in Selangor, Malaysia—Policy, Public Perception, and Current Practices. Environmental Management, 64, 509–519. https://doi.org/10.1007/s00267-019-01199-y.

Mohamed, N.H.; Khan, S.; Jagtap, S. (2023). Modernizing Medical Waste Management: Unleashing the Power of the Internet of Things (IoT). Sustainability, 15, 9909. https://doi.org/10.3390/su15139909.

Gwenzi, W., Simbanegavi, T. T., & Rzymski, P. (2023). Household Disposal of Pharmaceuticals in Low-Income Settings: Practices, Health Hazards, and Research Needs. Water, 15(3), 476. https://doi.org/10.3390/w15030476.

Vaverková, M.D. (2019). Landfill Impacts on the Environment—Review. Geosciences, 9, 431. https://doi.org/10.3390/geosciences9100431.

Parvin, F.; Tareq, S.M. (2021). Impact of landfll leachate contamination on surface and groundwater of Bangladesh: a systematic review and possible public health risks assessment. Applied Water Science, 11, 100. https://doi.org/10.1007/s13201-021-01431-3.

Lu, M.C.; Chen, Y.Y.; Chiou, M.R.; Chen, M.Y.; Fan, H.J. (2016). Occurrence and treatment efficiency of pharmaceuticals in landfill leachates. Waste Management, 55, 257‒64. https://doi.org/10.1016/j.wasman.2016.03.029.

Al-Odaini, N.A.; Zakaria, M.P.; Yaziz, M.I.; Surif, S.; Abdulghani, M. (2013). The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia. International Journal of Environmental Analytical Chemistry, 93, 245‒264. https://doi.org/10.1080/03067319.2011.592949.

Li, J.; Sun, C.; Chen, W.; Zhang, Q.; Zhou, S.; Lin, R.; Wang, Y. (2022). Groundwater Quality and Associated Human Health Risk in a Typical Basin of the Eastern Chinese Loess Plateau. Water, 14, 1371. https://doi.org/10.3390/w14091371.

Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. (2014). Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Science of the Total Environment, 488–489, 261‒267. https://doi.org/10.1016/j.scitotenv.2014.04.109.

Yang, B.; Liu, S.; Cheng, J.; Qu, H.; Guo, Y.; Ji, C.; Wang, Y.; Zhao, S.; Huang, S.; Zhao, L.; et al. (2024). Pharmacokinetics of Enrofloxacin in Plasma, Urine, and Feces of Donkey (Equus asinus) after a Single Intragastric Administration. Antibiotics, 13, 355. https://doi.org/10.3390/antibiotics13040355.

Kobetičová, K.; Nábělková, J.; Brejcha, V.; Böhm, M.; Jerman, M.; Brich, J.; Černý, R. (2023). Ecotoxicity of Caffeine as a Bio-Protective Component of Flax-Fiber-Reinforced Epoxy-Composite Building Material. Polymers, 15, 3901. https://doi.org/10.3390/polym15193901.

Praveena, S.M.; Shaifuddin, S.N.M.; Sukiman, S.; Nasir, F.A.M.; Hanafi, Z.; Kamarudin, N.; Ismail, T.H.T., & Aris, A.Z. (2018). Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Science of the Total Environment, 642, 230‒240. https://doi.org/10.1016/j.scitotenv.2018.06.058.

Praveena, S.M.; Mohd Rashid, M.Z.; Mohd Nasir, F.A.; Sze Yee, W.; Aris, A.Z. (2019). Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicology and Environmental Safety, 180, 549‒556. https://doi.org/10.1016/j.ecoenv.2019.05.051.

Mohd Nasir, F.A.; Praveena, S.M.; Aris, A.Z. (2019). Public awareness level and occurrence of pharmaceutical residues in drinking water with potential health risk: A study from Kajang (Malaysia). Ecotoxicology and Environmental Safety, 185, 109681. https://doi.org/10.1016/j.ecoenv.2019.109681.

Azmi Hassali, M.; Shakeel, S. (2020). Unused and Expired Medications Disposal Practices among the General Public in Selangor, Malaysia. Pharmacy, 8, 196. https://doi.org/10.3390/pharmacy8040196.

Subari, S.N.M.; Osman, R.; Saim, N. (2017). Occurrence, source apportionment and environmental risk assessment of pharmaceuticals in Klang river, Malaysia. Pertanika Journal of Science and Technology, 25, JST-S0162-2016.

Al-Qaim, F.F.; Mussa, Z.H.; Yuzir, A.; Tahrim, N.A.; Hashim, N.; Azman, S. (2018). Transportation of Different Therapeutic Classes of Pharmaceuticals to the Surface Water, Sewage Treatment Plant, and Hospital Samples, Malaysia. Water, 10, 916. https://doi.org/10.3390/w10070916.

Zakaria, S.R.; Saim, N.; Osman, R.; Abdul Haiyee, Z.; Juahir, H. (2018). Combination of Sensory, Chromatographic, and Chemometrics Analysis of Volatile Organic Compounds for the Discrimination of Authentic and Unauthentic Harumanis Mangoes. Molecules, 23, 2365. https://doi.org/10.3390/molecules23092365.

Drewes, J.E.; Shore, L.S. (2001). Concerns about pharmaceuticals in water reuse, groundwater recharge, and animal waste. ACS Symposium Series, 791,206‒228. https://doi.org/10.1021/bk-2001-0791.ch012.

Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. In Chemical Reviews, 119, 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299.

Xie, H.J.; Lou, Z.H.; Chen, Y.M.; Jin, A.M.; Chen, P.X. (2011). An analytical solution to contaminant advection and dispersion through a GCL/AL liner system. Chinese Science Bulletin, 56, 811–818. https://doi.org/10.1007/s11434-010-4039-x.

Alvarino, T.; Suarez, S.; Lema, J.; Omil, F. (2018). Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. In Science of the Total Environment 615, 297‒306. https://doi.org/10.1016/j.scitotenv.2017.09.278.

Anderson, M.P.; Cherry, J.A. (2009). Using models to simulate the movement of contaminants through groundwater flow systems. CRC Critical Reviews in Environmental Control, 9, 97–156. https://doi.org/10.1080/10643387909381669.

Al-Khaled, K.; Hajji, M.A. (2016). Mathematical modeling to simulate the movement of contaminants in groundwater. Journal of Applied Analysis and Computation, 6, 156‒170. https://doi.org/10.11948/2016013.

Choi, D.H.; Katakura, Y.; Matsuda, R.; Hayashi, Y.; Hirobe, M.; Goda, Y.; Ninomiya, K.; Shioya, S. (2007). Validation of a method for predicting the precision, limit of detection and range of quantitation in competitive ELISA. Analytical Sciences, 23, 215–218. https://doi.org/10.2116/analsci.23.215.

Hayashi, Y.; Matsuda, R.; Maitani, T. (2004). Precision, Limit of Detection and Range of Quantitation in Competitive ELISA. Analytical Chemistry, 1, 1295–1301. https://doi.org/10.1021/ac0302859.

Yuan, F.; Hu, C.; Hu, X.; Qu, J.; Yang, M. (2009). Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Research, 43, 1766‒1774. https://doi.org/10.1016/j.watres.2009.01.008.

Jjemba, P.K. (2006). Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicology and Environmental Safety, 63, 113‒130. https://doi.org/10.1016/j.ecoenv.2004.11.011.

Petrović, M.; Hernando, M.D.; Díaz-Cruz, M.S.; Barceló, D. (2005). Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review. Journal of Chromatography A, 1067, 1‒14. https://doi.org/10.1016/j.chroma.2004.10.110.

Díaz-Cruz, M.S.; Barceló, D. (2006). Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 386, 973–985. https://doi.org/10.1007/s00216-006-0444-z.

Ter Laak, T.L.; Gebbink, W.A.; Tolls, J. (2006). Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environmental Toxicology and Chemistry, 25, 933‒941. https://doi.org/10.1897/05-229R.1.

Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. Journal of Environmental Management, 90, 2354‒2366. https://doi.org/10.1016/j.jenvman.2009.01.023.

Alexy, R.; Kümpel, T.; Kümmerer, K. (2004). Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere, 57, 505‒512. https://doi.org/10.1016/j.chemosphere.2004.06.024.

Rzymski, P.; Drewek, A.; Klimaszyk, P. (2017). Pharmaceutical Pollution of Aquatic Environment: An Emerging and Enormous Challenge. Limnological Review, 17, 97‒107. https://doi.org/10.1515/limre-2017-0010.

Fent, K.; Weston, A.A.; Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122‒159. https://doi.org/10.1016/j.aquatox.2005.09.009.

Kulik, K.; Lenart-Boroń, A.; Wyrzykowska, K. (2023). Impact of Antibiotic Pollution on the Bacterial Population within Surface Water with Special Focus on Mountain Rivers. Water, 15, 975. https://doi.org/10.3390/w15050975.

Quinn, B.; Gagné, F.; Blaise, C. (2008). An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Science of the Total Environment, 389, 306‒314. https://doi.org/10.1016/j.scitotenv.2007.08.038.

Stanley, J.K.; Ramirez, A.J.; Chambliss, C.K.; Brooks, B.W. (2007). Enantiospecific sublethal effects of the antidepressant fluoxetine to a model aquatic vertebrate and invertebrate. Chemosphere, 69, 9‒16. https://doi.org/10.1016/j.chemosphere.2007.04.080.

Wojnarowski, K.; Podobiński, P.; Cholewińska, P.; Smoliński, J.; Dorobisz, K. (2021). Impact of Estrogens Present in Environment on Health and Welfare of Animals. Animals, 11, 2152. https://doi.org/10.3390/ani11072152.

Feng, W.; Deng, Y.; Yang, F.; Miao, Q.; Ngien, S.K. (2023). Systematic Review of Contaminants of Emerging Concern (CECs): Distribution, Risks, and Implications for Water Quality and Health. Water, 15, 3922. https://doi.org/10.3390/w15223922.

Kolar, B.; Arnuš, L.; Jeretin, B.; Gutmaher, A.; Drobne, D.; Durjava, M.K. (2014). The toxic effect of oxytetracycline and trimethoprim in the aquatic environment. Chemosphere, 115, 75‒80. https://doi.org/10.1016/j.chemosphere.2014.02.049.

Jia, H.-B.; Zhang, Y.-H.; Gao, R.-Y.; Liu, X.-J.; Shao, Q.-Q.; Hu, Y.-W.; Fu, L.-M.; Zhang, J.-P. (2024). Combined Toxicity of Polystyrene Nanoplastics and Pyriproxyfen to Daphnia magna. Sustainability, 16, 4066. https://doi.org/10.3390/su16104066.

Zhou, Y.; Wu, S.; Zhou, H.; Huang, H.; Zhao, J.; Deng, Y.; Wang, H.; Yang, Y.; Yang, J.; Luo, L. (2018). Chiral pharmaceuticals: Environment sources, potential human health impacts, remediation technologies and future perspective. Environment International, 121, 523‒537. https://doi.org/10.1016/j.envint.2018.09.041.

Wimmerova, L.; Solcova, O.; Spacilova, M.; Cehajic, N.; Krejcikova, S.; Marsik, P. (2022). Toxicity Assessment and Treatment Options of Diclofenac and Triclosan Dissolved in Water. Toxics, 10, 422. https://doi.org/10.3390/toxics10080422.

Oaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T.; Meteyer, C.U.; Rideout, B.A.; Shivaprasad, H.L.; Ahmed, S.; Chaudhry, M.J.I.; Arshad, M.; Mahmood, S.; Ali, A.; Khan, A.A. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nature, 427, 630–633. https://doi.org/10.1038/nature02317.

Triebskorn, R.; Casper, H.; Scheil, V.; Schwaiger, J. (2007). Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Analytical and Bioanalytical Chemistry, 387, 1405–1416. https://doi.org/10.1007/s00216-006-1033-x.

Wydro, U.; Wołejko, E.; Luarasi, L.; Puto, K.; Tarasevičienė, Ž.; Jabłońska-Trypuć, A. (2024). A Review on Pharmaceuticals and Personal Care Products Residues in the Aquatic Environment and Possibilities for Their Remediation. Sustainability, 16, 169. https://doi.org/10.3390/su16010169.

Kimura, K.; Toshima, S.; Amy, G.; Watanabe, Y. (2004). Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. Journal of Membrane Science, 245, 71‒78. https://doi.org/10.1016/j.memsci.2004.07.018.

Richardson, S.D. (2003). Disinfection by-products and other emerging contaminants in drinking water. TrAC - Trends in Analytical Chemistry, 22, 666‒684. https://doi.org/10.1016/S0165-9936(03)01003-3.

Prosser, R.S.; Sibley, P.K. (2015). Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation. Environment International, 75, 223‒233. https://doi.org/10.1016/j.envint.2014.11.020.

Ternes, T.A. (2001). Pharmaceuticals and metabolites as contaminants of the aquatic environment. ACS Symposium Series, 791, 39-54. https://doi.org/10.1021/bk-2001-0791.ch002.

Ternes, T.A. (2001). Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC - Trends in Analytical Chemistry, 20, 419‒434. https://doi.org/10.1016/S0165-9936(01)00078-4.

Praveena, S.M.; Mohd Rashid, M.Z.; Mohd Nasir, F.A.; Wee, S.Y.; Aris, A.Z. (2021). Occurrence, Human Health Risks, and Public Awareness Level of Pharmaceuticals in Tap Water from Putrajaya (Malaysia). Exposure and Health, 13, 93–104. https://doi.org/10.1007/s12403-020-00364-7.

Attrah, M.; Elmanadely, A.; Akter, D.; Rene, E.R. (2022). A Review on Medical Waste Management: Treatment, Recycling, and Disposal Options. Environments, 9, 146. https://doi.org/10.3390/environments9110146.

Singh, S.; Prakash, V. (2007). Toxic environmental releases from medical waste incineration: a review. Environmental Monitoring and Assessment, 132, 67–81. https://doi.org/10.1007/s10661-006-9503-3.

Snyder, S.A.; Adham, S.; Redding, A.M.; Cannon, F.S.; DeCarolis, J.; Oppenheimer, J.; Wert, E.C.; Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202, 156‒181. https://doi.org/10.1016/j.desal.2005.12.052.

Al-Mashaqbeh, O.; Alsafadi, D.; Dalahmeh, S.; Bartelt-Hunt, S.; Snow, D. (2019). Removal of Selected Pharmaceuticals and Personal Care Products in Wastewater Treatment Plant in Jordan. Water, 11, 2004. https://doi.org/10.3390/w11102004.

Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70‒85. https://doi.org/10.1016/j.chemosphere.2014.12.058.

Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Science of the Total Environment, 532, 112‒126. https://doi.org/10.1016/j.scitotenv.2015.05.130.

Mansour, F.; Al-Hindi, M.; Yahfoufi, R.; Ayoub, G.M.; Ahmad, M.N. (2018). The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. Reviews in Environmental Science and Biotechnology, 17, 109–145. https://doi.org/10.1007/s11157-017-9456-8.

Radjenović, J.; Petrović, M.; Ventura, F.; Barceló, D. (2008). Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Research, 42, 3601‒3610. https://doi.org/10.1016/j.watres.2008.05.020.

Pronk, W.; Koné, D. (2009). Options for urine treatment in developing countries. Desalination, 248, 360‒368. https://doi.org/10.1016/j.desal.2008.05.076.

Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent (2022). Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics, 10, 484. https://doi.org/10.3390/toxics10080484.

Obotey Ezugbe, E.; Rathilal, S. (2020). Membrane Technologies in Wastewater Treatment: A Review. Membranes, 10, 89. https://doi.org/10.3390/membranes10050089.

Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1‒12. https://doi.org/10.1016/j.biortech.2016.11.042.

Zhao, H.W.; Viraraghavan, T. (2004). Analysis of the performance of an anaerobic digestion system at the Regina wastewater treatment plant. Bioresource Technology, 95, 301‒307. https://doi.org/10.1016/j.biortech.2004.02.023.

Ngema, L.; Sathiyah, D.; Tetteh, E.K.; Rathilal, S. (2023). Enhancing Biodegradation of Industrial Wastewater into Methane-Rich Biogas Using an Up-Flow Anaerobic Sludge Blanket Reactor. Applied Sciences, 13, 4181. https://doi.org/10.3390/app13074181.

Homem, V.; Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices - A review. Journal of Environmental Management, 92, 2304‒2347. https://doi.org/10.1016/j.jenvman.2011.05.023.

Guo, Y.; Qi, P.S.; Liu, Y.Z. (2017). A Review on Advanced Treatment of Pharmaceutical Wastewater. IOP Conference Series: Earth and Environmental Science, 63, 012025. https://doi.org/10.1088/1755-1315/63/1/012025.

Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189‒207. https://doi.org/10.1016/j.jenvman.2018.04.103.

About this article

SUBMITTED: 20 April 2024
ACCEPTED: 03 June 2024
PUBLISHED: 7 June 2024
SUBMITTED to ACCEPTED: 45 days
DOI: https://doi.org/10.53623/tasp.v4i1.437

Cite this article
Lie, M. ., Rubiyatno, Binhudayb, F. S. ., Thao, N. T. T. ., & Kristanti, R. A. (2024). Assessing the Impact of Pharmaceutical Contamination in Malaysian Groundwater: Risks, Modelling, and Remediation Strategies. Tropical Aquatic and Soil Pollution, 4(1), 43–59. https://doi.org/10.53623/tasp.v4i1.437
Keywords
Accessed
314
Citations
0
Share this article