Soil pollution is one of the concern issues in the Asia region. Soil acts as a shelter for underground microorganisms and provides nutrients for plants. Most of the organic contaminants are sourced from agriculture and industrial areas. Organic contaminants which are volatilized and immiscible lead to air and water pollution. Electrokinetic remediation is a technology that has been developed for soil remediation since a few decades ago. It is not fully developed and is still under investigation. Electrokinetic remediation is being applied to improve the removal efficiency of organic contaminants which exist in low hydraulic conductivity of soil or fine-grained soil. Generally, a low direct current, 1DCV/cm is applied. Facilitating agents including surfactant and co-solvent combined with electrokinetic remediation eliminated more organic contaminants compared with electrokinetic remediation alone. Electrokinetic remediation with the addition of bioremediation or phytoremediation process manipulates the transportation of organic contaminants in soil to increase the efficiency of remediation technologies. Electrokinetic remediation is recommended due to its flexibility, cost-effectiveness, and safety. One of the drawbacks is low effectiveness in removing non-polar organic pollutants due to weak desorption capacity and poor solubility in water. Co-solvents and surfactants can be introduced as alternatives to enhancing the solubility of non-polar pollutants and reducing surface tension, which improves their mobility within the soil matrix. These facilitating agents help improve the overall effectiveness of electrokinetic remediation, particularly for challenging contaminants.
Moore, D.; Robson, G.D.; Trinci, A.P.J. (2020). 21st Century Guidebook to Fungi, 2nd ed.; Cambridge University Press: Cambridge, United Kingdom.
Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment international, 125, 365‒385. https://doi.org/10.1016/j.envint.2019.01.067.
Chernysh, Y.; Chubur, V.; Ablieieva, I.; Skvortsova, P.; Yakhnenko, O.; Skydanenko, M.; Plyatsuk, L.; Roubík, H. (2024). Soil Contamination by Heavy Metals and Radionuclides and Related Bioremediation Techniques: A Review. Soil System, 8, 36. https://doi.org/10.3390/soilsystems8020036.
Snousy, M.; Khalil, M.; Abdel-moghny, T.; Ali, E.-s. (2016). An Overview on the Organic Contaminants. SDRP Journal Of Earth Sciences & Environmental Studies, 1, 9. http://doi/org/10.25177/JESES.1.2.1.
Zhang, L.; Li, J.; Zhao, Y.; Li, X.; Yang, X.; Wen, S.; Cai, Z.; Wu, Y. (2011). A national survey of polybrominated diphenyl ethers (PBDEs) and indicator polychlorinated biphenyls (PCBs) in Chinese mothers’ milk. Chemosphere, 84, 625‒633. http://doi/org/https://doi.org/10.1016/j.chemosphere.2011.03.041.
Paz-Ferreiro, J.; Gascó, G.; Méndez, A.; Reichman, S.M. (2018). Soil Pollution and Remediation. I nternational Journal of Environmental Research and Public Health, 15, 1657. https://doi.org/10.3390/ijerph15081657.
Tsiantas, P.; Karasali, H.; Pavlidis, G.; Kavasilis, S.; Doula, M. (2023). The status of organochlorine pesticide contamination in Greek agricultural soils: the ghost of traditional agricultural history. Environmental Science and Pollution Research, 30, 117654‒117675. http://doi/org/10.1007/s11356-023-30447-2.
Sun, J.; Pan, L.; Tsang, D.C.W.; Zhan, Y.; Zhu, L.; Li, X. (2018). Organic contamination and remediation in the agricultural soils of China: A critical review. Science of the Total Environment, 615, 724‒740. http://doi/org/https://doi.org/10.1016/j.scitotenv.2017.09.271.
Singh, K.P.; Malik, A.; Sinha, S. (2007). Persistent Organochlorine Pesticide Residues in Soil and Surface Water of Northern Indo-Gangetic Alluvial Plains. Environmental Monitoring and Assessment, 125, 147‒155. http://doi/org/10.1007/s10661-006-9247-0.
Zhang, H.B.; Luo, Y.M.; Wong, M.H.; Zhao, Q.G.; Zhang, G.L. (2006). Distributions and Concentrations of PAHs in Hong Kong Soils. Environmental Pollution, 141, 107‒114. http://doi/org/https://doi.org/10.1016/j.envpol.2005.08.031.
Nguyen, N.V. (2009). Occurrence of persistent toxic substances in soils, sediments, fishes and human breast milk in southern Vietnam; Lausanne, EPFL: Lausanne, Switzerland. http://doi/org/10.5075/epfl-thesis-4520.
Brusseau, M.L. (1991). Cooperative sorption of organic chemicals in systems composed of low organic carbon aquifer materials. Environmental Science & Technology, 25, 1747‒1752. http://doi/org/10.1021/es00022a011.
Mackay, D.M.; Roberts, P.V.; Cherry, J.A. (1985). Transport of organic contaminants in groundwater. Environmental Science & Technology, 19, 384‒392. http://doi/org/10.1021/es00135a001.
Copaciu, F.; Opriş, O.; Niinemets, Ü.; Copolovici, L. (2016). Toxic Influence of Key Organic Soil Pollutants on the Total Flavonoid Content in Wheat Leaves. Water, Air, & Soil Pollution, 227, 196. http://doi/org/10.1007/s11270-016-2888-x.
Zhang, Y.; Li, S.; Zhang, Y.; Chen, Y.; Wang, X.; Sun, Y. (2022). Bioaccumulation and Biomagnification of Hexabromocyclododecane in Marine Biota from China: A Review. Toxics, 10, 620. https://doi.org/10.3390/toxics10100620.
Carpenter, D.O. (2011). Health effects of persistent organic pollutants: the challenge for the Pacific Basin and for the world. Reviews on Environmental Health, 26, 61‒69. http://doi/org/doi:10.1515/reveh.2011.009.
Cameselle, C.; Gouveia, S. (2018). Electrokinetic remediation for the removal of organic contaminants in soils. Current Opinion in Electrochemistry, 11, 41‒47. http://doi/org/https://doi.org/10.1016/j.coelec.2018.07.005.
Tiwari, M.; Tripathy, D.B. (2023). Soil contaminants and their removal through surfactant-enhanced soil remediation: a comprehensive review. Sustainability, 15, 13161. https://doi.org/10.3390/su151713161.
Liu, J.-W.; Wei, K.-H.; Xu, S.-W.; Cui, J.; Ma, J.; Xiao, X.-L.; Xi, B.-D.; He, X.-S. (2021). Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. Science of the Total Environment, 756, 144142. https://doi.org/10.1016/j.scitotenv.2020.144142.
Zahn, D.; Neuwald, I.J.; Knepper, T.P. (2020). Analysis of mobile chemicals in the aquatic environment—current capabilities, limitations and future perspectives. Analytical and Bioanalytical Chemistry, 412, 4763-4784. https://doi.org/10.1007/s00216-020-02520-z.
Yaashikaa, P.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution, 301, 119035. https://doi.org/10.1016/j.envpol.2022.119035.
Mousavi, S.M.; Hashemi, S.A.; Iman Moezzi, S.M.; Ravan, N.; Gholami, A.; Lai, C.W.; Chiang, W.-H.; Omidifar, N.; Yousefi, K.; Behbudi, G. (2021). Recent advances in enzymes for the bioremediation of pollutants. Biochemistry Research International, 2021, 5599204. https://doi.org/10.1155/2021/5599204.
Cameselle, C.; Pena, A. (2016). Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals. Process Safety and Environmental Protection, 104, 209‒217. http://doi/org/https://doi.org/10.1016/j.psep.2016.09.002.
Wang, J.-Y.; Huang, X.-J.; Kao, J.C.M.; Stabnikova, O. (2007). Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process. Journal of Hazardous Materials, 144, 292‒299. http://doi/org/https://doi.org/10.1016/j.jhazmat.2006.10.026.
Bruell, C.J.; Segall, B.A.; Walsh, M.T. (1992). Electroosomotic Removal of Gasoline Hydrocarbons and TCE From Clay. Journal of Environmental Engineering, 118, 68‒83. http://doi/org/doi:10.1061/(ASCE)0733-9372(1992)118:1(68).
Acar, Y.B.; Li, H.; Gale, R.J. (1992). Phenol Removal from Kaolinite by Electrokinetics. Journal of Geotechnical Engineering, 118, 1837‒1852. http://doi/org/doi:10.1061/(ASCE)0733-9410(1992)118:11(1837).
Vocciante, M.; Dovì, V.G.; Ferro, S. (2021). Sustainability in ElectroKinetic Remediation Processes: A Critical Analysis. Sustainability, 13, 770. https://doi.org/10.3390/su13020770.
Shin, S.-Y.; Park, S.-M.; Baek, K. (2017). Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil. Environmental Science and Pollution Research, 24, 9820‒9825. http://doi/org/10.1007/s11356-017-8720-3.
Hassan, I.; Mohamedelhassan, E.; Yanful, E.K. (2015). Solar powered electrokinetic remediation of Cu polluted soil using a novel anode configuration. Electrochimica Acta, 181, 58‒67. https://doi.org/10.1016/j.electacta.2015.02.216.
Yao, Z.; Li, J.; Xie, H.; Yu, C. (2012). Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procedia Environmental Sciences, 16, 722‒729. https://doi.org/10.1016/j.proenv.2012.10.099.
Ottosen, L.M.; Larsen, T.H.; Jensen, P.E.; Kirkelund, G.M.; Kerrn-Jespersen, H.; Tuxen, N.; Hyldegaard, B.H. (2019). Electrokinetics applied in remediation of subsurface soil contaminated with chlorinated ethenes – A review. Chemosphere, 235, 113‒125. https://doi.org/10.1016/j.chemosphere.2019.06.075.
Song, X.; Carlsson, C.; Kiilsgaard, R.; Bendz, D.; Kennedy, H. (2020). Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations. Sustainability, 12, 8442.https://doi.org/10.3390/su12208442.
Ricart, M.T.; Pazos, M.; Gouveia, S.; Cameselle, C.; Sanromán, M.A. (2008). Removal of organic pollutants and heavy metals in soils by electrokinetic remediation. Journal of Environmental Science and Health, Part A, 43, 871‒875. http://doi/org/10.1080/10934520801974376.
Juan-García, A.; Font, G.; Picó, Y. (2005). Determination of organic contaminants in food by capillary electrophoresis. Journal of Separation Science, 28, 793‒812. http://doi/org/10.1002/jssc.200500041.
Whatley, H. Balbaied, T.; Moore, E. (2023). Overview of Capillary Electrophoresis Analysis of Alkaline Phosphatase (ALP) with Emphasis on Post-Translational Modifications (PTMs). Kinases Phosphatases, 1, 206‒219. https://doi.org/10.3390/kinasesphosphatases1030013.
Karagunduz, A.; Gezer, A.; Karasuloglu, G. (2007). Surfactant enhanced electrokinetic remediation of DDT from soils. Science of the Total Environment, 385, 1‒11. http://doi/org/https://doi.org/10.1016/j.scitotenv.2007.07.010.
Jeon, C.-S.; Yang, J.-S.; Kim, K.-J.; Baek, K. (2010). Electrokinetic Removal of Petroleum Hydrocarbon from Residual Clayey Soil Following a Washing Process. CLEAN – Soil, Air, Water, 38, 189‒193. http://doi/org/https://doi.org/10.1002/clen.200900190.
Han, H.; Lee, Y.-J.; Kim, S.-H.; Yang, J.-W. (2009). Electrokinetic Remediation of Soil Contaminated with Diesel Oil Using EDTA–Cosolvent Solutions. Separation Science and Technology, 44, 2437‒2454. http://doi/org/10.1080/01496390902983794.
Wang, B.; Wang, X.; Hu, F.; Wang, X.; Yang, Z.; Zhu, X.; Li, G.; Wang, K. (2024). Study on the Properties of Compound Surfactants with PO Groups. Energies, 17, 513. https://doi.org/10.3390/en17020513.
Fardin, A.B.; Jamshidi-Zanjani, A.; Darban, A.K. (2021). Application of enhanced electrokinetic remediation by coupling surfactants for kerosene-contaminated soils: Effect of ionic and nonionic surfactants. Journal of Environmental Management, 277, 111422. ttps://doi.org/10.1016/j.jenvman.2020.111422.
Calenciuc, C.; Fdez-Sanromán, A.; Lama, G.; Annamalai, S.; Sanromán, A.; Pazos, M. (2022). Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts, 12, 64. https://doi.org/10.3390/catal12010064.
Liu, X.; Wang, Y. (2022). Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site. Sustainability, 14, 16948. https://doi.org/10.3390/su142416948.
Kang, J.W. (2014). Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology Letter, 36, 1129‒1139. http://doi/org/10.1007/s10529-014-1466-9.
Hassan, I.; Mohamedelhassan, E.; Yanful, E.; Yuan, Z. (2016). A Review Article: Electrokinetic Bioremediation Current Knowledge and New Prospects. Advances in Microbiology, 6, 57‒72. http://doi/org/10.4236/aim.2016.61006.
Gill, R.T.; Harbottle, M.J.; Smith, J.W.N.; Thornton, S.F. (2014). Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications. Chemosphere, 107, 31‒42. https://doi.org/10.1016/j.chemosphere.2014.03.019.
Dong, Z.-Y.; Huang, W.-H.; Xing, D.-F.; Zhang, H.-F. (2013). Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation. Journal of Hazardous Materials, 260, 399‒408. ttps://doi.org/10.1016/j.jhazmat.2013.05.003.
Pazos, M.; Plaza, A.; Martín, M.; Lobo, M.C. (2012). The impact of electrokinetic treatment on a loamy-sand soil properties. Chemical Engineering Journal, 183, 231‒237. https://doi.org/10.1016/j.cej.2011.12.067.
Mena Ramírez, E.; Villaseñor Camacho, J.; Rodrigo Rodrigo, M.A.; Cañizares Cañizares, P. (2014). Feasibility of electrokinetic oxygen supply for soil bioremediation purposes. Chemosphere, 117, 382‒387. https://doi.org/10.1016/j.chemosphere.2014.07.075.
Mao, X.; Wang, J.; Ciblak, A.; Cox, E.E.; Riis, C.; Terkelsen, M.; Gent, D.B.; Alshawabkeh, A.N. (2012). Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay. Journal of Hazardous Materials, 213‒214, 311‒317. http://doi/org/10.1016/j.jhazmat.2012.02.001.
Mena, E.; Villaseñor, J.; Rodrigo, M.A.; Cañizares, P. (2016). Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient. Chemical Engineering Journal, 299, 30‒36. https://doi.org/10.1016/j.cej.2016.04.049.
Cameselle, C.; Chirakkara, R.A.; Reddy, K.R. (2013). Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere, 93, 626‒636. https://doi.org/10.1016/j.chemosphere.2013.06.029.
Park, J.K.; Oh, K. (2023). Advancements in Phytoremediation Research for Soil and Water Resources: Harnessing Plant Power for Environmental Cleanup. Sustainability, 15, 13901. https://doi.org/10.3390/su151813901.
Cameselle, C.; Gouveia, S.; Cabo, A. (2021). Enhanced Electrokinetic Remediation for the Removal of Heavy Metals from Contaminated Soils. Applied Sciences, 11, 1799. https://doi.org/10.3390/app11041799.
Mulati, H.; Mamat, A.; Ailijiang, N.; Jiang, L.; Li, N.; Hu, Y.; Su, Y. (2023). Electrokinetic-Assisted Phytoremediation of Pb-Contaminated Soil: Influences of Periodic Polarity Reversal Direct Current Field. Sustainability, 15, 8439. https://doi.org/10.3390/su15118439.
Moghadam, M.J.; Moayedi, H.; Sadeghi, M.M.; Hajiannia, A. (2016). A review of combinations of electrokinetic applications. Environmental Geochemistry and Health, 38, 1217‒1227. http://doi/org/10.1007/s10653-016-9795-3.
Tripathi, M.; Singh, S.; Pathak, S.; Kasaudhan, J.; Mishra, A.; Bala, S.; Garg, D.; Singh, R.; Singh, P.; Singh, P.K.; et al. (2023). Recent Strategies for the Remediation of Textile Dyes from Wastewater: A Systematic Review. Toxics, 11, 940. https://doi.org/10.3390/toxics11110940.
Han, D.; Wu, X.; Li, R.; Tang, X.; Xiao, S.; Scholz, M. (2021). Critical review of electro-kinetic remediation of contaminated soils and sediments: mechanisms, performances and technologies. Water, Air, & Soil Pollution, 232, 335. https://doi.org/10.1007/s11270-021-05182-4.
Lageman, R.; Clarke, R.L.; Pool, W. (2005). Electro-reclamation, a versatile soil remediation solution. Engineering Geology, 77, 191‒201. https://doi.org/10.1016/j.enggeo.2004.07.010.
Huang, D.; Xu, Q.; Cheng, J.; Lu, X.; Zhang, H. (2012). Electrokinetic Remediation and Its Combined Technologies for Removal of Organic Pollutants from Contaminated Soils. International Journal of Electrochemical Science, 7, 4528‒4544. https://doi.org/10.1016/S1452-3981(23)19558-7.
Demarco, C.F.; Quadro, M.S.; Selau Carlos, F.; Pieniz, S.; Morselli, L.B.G.A.; Andreazza, R. (2023). Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives. Sustainability, 15, 1411. https://doi.org/10.3390/su15021411.
Wang, F.; Wang, H.; Dong, W.; Yu, X.; Zuo, Z.; Lu, X.; Zhao, Z.; Jiang, J.; Zhang, X. (2024). Enhanced multi-metals stabilization: Synergistic insights from hydroxyapatite and peroxide dosing strategies. Science of the Total Environment, 927, 172159. https://doi.org/10.1016/j.scitotenv.2024.172159.
Gonçalves, N.P.; da Silva, E.F.; Tarelho, L.A.; Labrincha, J.A.; Novais, R.M. (2024). Simultaneous removal of multiple metal (loid) s and neutralization of acid mine drainage using 3D-printed bauxite-containing geopolymers. Journal of Hazardous Materials, 462, 132718. https://doi.org/10.1016/j.jhazmat.2023.132718.
SUBMITTED: 30 April 2024
ACCEPTED: 17 June 2024
PUBLISHED:
20 June 2024
SUBMITTED to ACCEPTED: 49 days
DOI:
https://doi.org/10.53623/idwm.v4i1.442