Skip to main content

Sustainable Energy from Waste: A Feasibility Study in Miri, Malaysia

Author(s): Ming Xuan Chua 1 , Nur Hasyimah Hashim 2 , Musademba Downmore 3 , Paran Gani 1
Author(s) information:
1 Department of Civil & Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
2 State Development Office of Terengganu, Implementation Coordination Unit, Prime Minister’s Department (ICU JPM), Level 10, Wisma Darul Iman, 20503 Kuala Terengganu, Malaysia.
3 Department of Fuels and Energy Engineering, School of Engineering Sciences and Technology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe.

Corresponding author

The growth of urban populations, industrialization, and economic development has led to a surge in solid waste production. When local recycling infrastructure falls short, much of this waste ends up in landfills, causing environmental and social challenges. This study aims to assess the feasibility of converting municipal solid waste (MSW) into energy, with a focus on combustion chamber modeling in Miri, Sarawak. Data on MSW composition are obtained from secondary sources. Ansys Fluent software is used to model the combustion chamber, and simulations are conducted to explore temperature, turbulence, and species distribution. MSW composition illustrates higher substantial fractions, with 39.8% being food waste, followed by 20.7% plastic/rubber. Calorific values range from 4652 kJ/kg for food waste to 32564 kJ/kg for plastic/rubber. Combustion simulations result in maximum flue gas temperatures of 1500 °C, 1200 °C, and 1800 °C under varying air inlet conditions. Turbulence intensities on the grate range from 125% to 174% for these air inlet configurations. The study concludes that moisture content significantly affects calorific value and heat generation during combustion. Higher turbulence intensities lead to increased reaction rates and heat generation, improving the energy efficiency of the process.

Next article

Sharma, K.D.; Jain, S. (2020). Municipal Solid Waste Generation, Composition, and Management: The Global Scenario. Social Responsibility Journal, 16, 917–948. http://doi/org/10.1108/SRJ-06-2019-0210/FULL/PDF.

Saxena, V.; Kumar Padhi, S.; Kumar Dikshit, P.; Pattanaik, L. (2022). Recent Developments in Landfill Leachate Treatment: Aerobic Granular Reactor and Its Future Prospects. Environmental Nanotechnology and Monitoring Management, 18, 100689. http://doi/org/10.1016/J.ENMM.2022.100689.

Zaini, M.S.I.; Hasan, M.; Zolkepli, M.F. (2022). Urban Landfills Investigation for Leachate Assessment Using Electrical Resistivity Imaging in Johor, Malaysia. Environmental Challenges, 6, 100415, http://doi/org/10.1016/J.ENVC.2021.100415.

Hussein, M.; Yoneda, K.; Mohd-Zaki, Z.; Amir, A.; Othman, N. (2021). Heavy Metals in Leachate, Impacted Soils and Natural Soils of Different Landfills in Malaysia: An Alarming Threat. Chemosphere, 267, 128874, http://doi/org/10.1016/J.CHEMOSPHERE.2020.128874.

Tang, K.H.D. (2020). Municipal Solid Waste Management in the Sarawak State of Malaysia and the Way Forward. Asian Journal of Environment & Ecology, 12, 38–55, https://doi.org/10.9734/ajee/2020/v12i230157.

Kusumastuti, D.I.; Gustira, A.; Wahono, E.P. (2021). Analysis of Water Distribution System at Alang-Alang Lebar. IOP Conference Series: Earth and Environmental Science, 930, 012019. http://doi/org/10.1088/1755-1315/930/1/012019.

Song, Z.; He, T.; Li, M.; Wu, D.; You, F. (2022). Self-Sustaining Smoldering as a Novel Disposal Approach for Food Waste with High Moisture Content. Fuel Processing Technology, 228, 107144. https://doi.org/10.1016/j.fuproc.2021.107144.

Xu, J.; Liao, Y.; Yu, Z.; Cai, Z.; Ma, X.; Dai, M.; Fang, S. (2018). Co-Combustion of Paper Sludge in a 750 t/d Waste Incinerator and Effect of Sludge Moisture Content: A Simulation Study. Fuel, 217, 617‒625. http://doi/org/10.1016/j.fuel.2017.12.118.

Zhang, H.; Zhang, J.; Liu, Z.; Li, Z.; Chen, H. (2021). Simulation Study of Using Macroporous Ceramic Membrane to Recover Waste Heat and Water from Flue Gas. Separation and Purification Technology, 275, 119218. https://doi.org/10.1016/j.seppur.2021.119218.

Shan, K.; Luo, Q.; Yun, P.; Huang, L.; Huang, K.; Cao, B.; Tang, B.; Jiang, H. (2023). All-Day Working Photovoltaic Cooling System for Simultaneous Generation of Water and Electricity by Latent Heat Recycling. Chemical Engineering Journal, 457, 141283. http://doi/org/10.1016/j.cej.2023.141283.

Vishwakarma, H.S.; Kushwaha, A.; Sundaramoorthy, S.; Goswami, S.; Rakshit, K.; Gupt, C.B.; Bhan, U.; Kumar, B.; Kaur, H.; Bahukhandi, K. (2023). Grate-Fired Boiler System for the Thermal Conversion of Municipal Solid Waste to Energy. In Bio-Based Materials and Waste for Energy Generation and Resource Management: Present and Emerging Waste Management Practices: Volume 5 of Advanced Zero Waste Tools; Hussain, C.M., Kushwaha, A., Bharagava, R.N., Goswami, L., Eds.; Elsevier, pp. 183‒205. https://doi.org/10.1016/B978-0-323-91149-8.00015-6.

Papamichael, I.; Voukkali, I.; Stylianou, M.; Zorpas, A.A.; Baidya, R.; Ghosh, S.K. (2024). Concept of Waste-to-Energy Strategies. In Advances in Biofuels Production, Optimization and Applications; Jeguirim, M., Zorpas, A.A., Eds.; Elsevier, pp. 241‒267. https://doi.org/10.1016/B978-0-323-95076-3.00002-8.

Thomas, J.J.; Sabu, V.R.; Nagarajan, G.; Kumar, S.; Basrin, G. (2020). Influence of Waste Vegetable Oil Biodiesel and Hexanol on a Reactivity Controlled Compression Ignition Engine Combustion and Emissions. Energy, 206, 118199. http://doi/org/10.1016/j.energy.2020.118199.

Zahedi, R.; Daneshgar, S.; Golivari, S. (2022). Simulation and Optimization of Electricity Generation by Waste to Energy Unit in Tehran. Sustainable Energy Technologies and Assessments, 53, 102338. http://doi/org/10.1016/j.seta.2022.102338.

Rezania, S.; Oryani, B.; Nasrollahi, V.R.; Darajeh, N.; Lotfi Ghahroud, M.; Mehranzamir, K. (2023). Review on Waste-to-Energy Approaches toward a Circular Economy in Developed and Developing Countries. Processes, 11, 2566. https://doi.org/10.3390/pr11092566.

Yaqub, Z.T.; Oboirien, B.O.; Leion, H. (2023). Chemical Looping Combustion (CLC) of Municipal Solid Waste (MSW). Journal of Materials and Cycles Waste Management, 25, 1900–1920. https://doi.org/10.1007/s10163-023-01674-z.

Quan, L.M.; Kamyab, H.; Yuzir, A.; Ashokkumar, V.; Hosseini, S.E.; Balasubramanian, B.; Kirpichnikova, I. (2022). Review of the Application of Gasification and Combustion Technology and Waste-to-Energy Technologies in Sewage Sludge Treatment. Fuel, 316, 123199. http://doi/org/10.1016/j.fuel.2022.123199.

Yan, M.; Tian, X.; Antoni; Yu, C.; Zhou, Z.; Hantoko, D.; Kanchanatip, E.; Khan, M.S. (2021). Influence of Multi-Temperature Primary Air on the Characteristics of MSW Combustion in a Moving Grate Incinerator. Journal of Environmental and Chemical Engineering, 9, 106690. http://doi/org/10.1016/j.jece.2021.106690.

Khan, A.H.; López-Maldonado, E.A.; Alam, S.S.; Khan, N.A.; López, J.R.L.; Herrera, P.F.M.; Abutaleb, A.; Ahmed, S.; Singh, L. (2022). Municipal Solid Waste Generation and the Current State of Waste-to-Energy Potential: State of Art Review. Energy Conversion and Management, 267. 115905. https://doi.org/10.1016/j.enconman.2022.115905.

Cai, P.T.; Zhan, M.X.; Ma, H.C.; Xu, X.; Chen, T.; Li, X.D. (2020). Pollutant Emissions during Co-Incineration of Landfill Material Refuse-Derived Fuel in a Lab-Scale Municipal Solid Waste Incineration Fluidized Bed Furnace. Energy and Fuels, 34, 2346–2354. http://doi/org/10.1021/acs.energyfuels.9b03793.

Zhang, J.; Zhang, S.; Liu, B. (2020). Degradation Technologies and Mechanisms of Dioxins in Municipal Solid Waste Incineration Fly Ash: A Review. Journal of Cleaner Production, 250. 119507. https://doi.org/10.1016/j.jclepro.2019.119507.

Yi, S.; Lin, H.; Abed, A.M.; Shawabkeh, A.; Marefati, M.; Deifalla, A. (2023). Sustainability and Exergoeconomic Assessments of a New MSW-to-Energy Incineration Multi-Generation Process Integrated with the Concentrating Solar Collector, Alkaline Electrolyzer, and a Reverse Osmosis Unit. Sustainable Cities Soceity, 91, 104412. http://doi/org/10.1016/j.scs.2023.104412.

Vanapalli, K.R.; Samal, B.; Dubey, B.K.; Bhattacharya, J. (2019). Emissions and Environmental Burdens Associated with Plastic Solid Waste Management. In Plastics to Energy: Fuel, Chemicals, and Sustainability Implications; Al-Salem, S.M., Ed.; William Andrew Publishing: New York, USA, pp. 313‒342. https://doi.org/10.1016/B978-0-12-813140-4.00012-1.

Rodrigues, L.F.; Santos, I.F.S. dos; Santos, T.I.S. dos; Barros, R.M.; Tiago Filho, G.L. (2022). Energy and Economic Evaluation of MSW Incineration and Gasification in Brazil. Renewable Energy, 188, 933‒944. http://doi/org/10.1016/j.renene.2022.02.083.

Liang, Y.; Xu, D.; Feng, P.; Hao, B.; Guo, Y.; Wang, S. (2021). Municipal Sewage Sludge Incineration and Its Air Pollution Control. Journal of Cleaner Production, 295, 126456. https://doi.org/10.1016/j.jclepro.2021.126456.

Kuo, W.C.; Lasek, J.; Słowik, K.; Głód, K.; Jagustyn, B.; Li, Y.H.; Cygan, A. (2019). Low-Temperature Pre-Treatment of Municipal Solid Waste for Efficient Application in Combustion Systems. Energy Conversion and Management, 196, 525‒535. http://doi/org/10.1016/j.enconman.2019.06.007.

Yan, M.; Antoni; Wang, J.; Hantoko, D.; Kanchanatip, E. (2021). Numerical Investigation of MSW Combustion Influenced by Air Preheating in a Full-Scale Moving Grate Incinerator. Fuel, 285, 119193. http://doi/org/10.1016/j.fuel.2020.119193.

Falconi, F.; Guillard, H.; Capitaneanu, S.; Raïssi, T. (2020). Control Strategy for the Combustion Optimization for Waste-to-Energy Incineration Plant. IFAC-PapersOnLine, 53, 13167‒13172. https://doi.org/10.1016/j.ifacol.2020.12.125.

About this article

SUBMITTED: 03 November 2023
ACCEPTED: 14 December 2023
PUBLISHED: 20 December 2023
SUBMITTED to ACCEPTED: 41 days
DOI: https://doi.org/10.53623/idwm.v3i2.349

Cite this article
Chua, M. X. ., Hashim, N. H. ., Downmore, M. ., & Gani, P. (2023). Sustainable Energy from Waste: A Feasibility Study in Miri, Malaysia. Industrial and Domestic Waste Management, 3(2), 115‒126. https://doi.org/10.53623/idwm.v3i2.349
Accessed
368
Citations
0
Share this article