Water is the most essential substance that supports various life mechanisms. It is a fundamental and necessary requirement for mankind and all other living creatures on the planet. Therefore, daily drinking water should be clean, readily available, sufficient, and free from harmful substances. However, in many rural areas, most sources of drinking water are assumed to be safe for human consumption, but this is not always the case. This work aims to provide a review of pollutants found in the drinking water of Sub-Saharan rural communities and explore potential low-cost remediation methods. The assessment of water pollutants and their remediation methods has been the primary focus of research for several years. Additionally, the World Health Organisation has established various minimum standards regarding the concentration of common pollutants in water. This review presents the major sources of water, the origin of contaminants, the different types of pollutants, and remediation methods to enhance the current knowledge in the field of rural drinking water contaminants.
Ambrose E.; Aloba I.; Grace B. (2018). Review of Organic Pollutants in Wastewater along the Course of River Gwagwarwa and River Rafin Malam in Kano State, Nigeria. Journal of Biotechnology and Bioengeneering, 2, 36–39.
Inyinbor Adejumoke, A.; Adebesin Babatunde, O.; Oluyori Abimbola, P.; Adelani-Akande Tabitha, A.; Dada Adewumi, O.; Oreofe Toyin, A. (2018). Water Pollution: Effects, Prevention, and Climatic Impact. Intech. https://doi.org/10.5772/INTECHOPEN.72018.
Sun D.; Addae EA.; Jemmali H.; Mensah, I.A.; Musah, M.; Mensah, C.N.; Appiah-Twum, F. (2021). Examining the determinants of water resources availability in sub-Sahara Africa: a panel-based econometrics analysis. Environmental Science and Pollution Research 28, 21212–21230. https://doi.org/10.1007/s11356-020-12256-z.
Amin MT.; Alazba AA.; Manzoor U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering, 2014, 825910. https://doi.org/10.1155/2014/825910.
Maiyo JK.; Dasika S.; Jafvert CT. (2023). Slow Sand Filters for the 21st Century: A Review. International Journal of Environmental Research and Public Health, 20, 1019. https://doi.org/10.3390/IJERPH20021019.
Yahya MD.; Yohanna I.; Auta M.; Obayomi KS. (2020). Remediation of Pb (II) ions from Kagara gold mining effluent using cotton hull adsorbent. Scientific African 8, e00399. https://doi.org/10.1016/J.SCIAF.2020.E00399.
Wang H.; Yu X. (2014). A review of the protection of sources of drinking water in China. Natural Resources Forum, 38, 99–108. https://doi.org/10.1111/1477-8947.12036.
Carrard N.; Foster T.; Willetts J. (2019). Groundwater as a Source of Drinking Water in Southeast Asia and the Pacific: A Multi-Country Review of Current Reliance and Resource Concerns. Water, 11, 1605. https://doi.org/10.3390/W11081605.
Daly SW.; Lowe J.; Hornsby GM.; Harris AR.; (2021). Multiple water source use in low- and middle-income countries: a systematic review. Journal of Water and Health 19, 370–392. https://doi.org/10.2166/WH.2021.205.
Abegaz MT.; Midekssa MJ.; (2021). Quality and Safety of Rural Community Drinking Water Sources in Guto Gida District, Oromia, Ethiopia. Journal of Environmental and Public Health 2021, 5568375. https://doi.org/10.1155/2021/5568375.
Water Sources. (accessed 25 July 2023) Available online: https://www.cdc.gov/healthywater/drinking/public/water_sources.html#print.
Katsanou, K.; Karapanagioti, H.K. (2017). Surface Water and Groundwater Sources for Drinking Water. In Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment, The Handbook of Environmental Chemistry; Gil, A., Galeano, L., Vicente, M., Eds.; Springer: Cham, Switzerland, Volume 67. https://doi.org/10.1007/698_2017_140.
Lewandowski J.; Meinikmann K.; Krause S.; (2020). Groundwater–Surface Water Interactions: Recent Advances and Interdisciplinary Challenges. Water, 12, 296. https://doi.org/10.3390/W12010296.
Thorslund J.; van Vliet MTH.; (2020). A global dataset of surface water and groundwater salinity measurements from 1980–2019. Scientific Data, 7, 1–11. https://doi.org/10.1038/s41597-020-0562-z.
Twisa S.; Buchroithner MF.; (2019). Seasonal and Annual Rainfall Variability and Their Impact on Rural Water Supply Services in the Wami River Basin, Tanzania. Water, 11, 2055. https://doi.org/10.3390/W11102055.
Ross TT.; Alim MA.; Rahman A.; (2022) Community-Scale Rural Drinking Water Supply Systems Based on Harvested Rainwater: A Case Study of Australia and Vietnam. Water 14, 1763. https://doi.org/10.3390/W14111763/S1.
Tăbăraşu A-M.; Matache M.; Griogore, I.; Vlăduţoiu, L.C. (2021). Environmental Pollution Caused By Agricultural Activities. Acta Technica Corviniensis 2, 39–46.
Water pollution from agriculture: a global review. (accessed 25 July 2023) Available online: https://www.fao.org/3/i7754e/i7754e.pdf.
Rad SM.; Ray AK.; Barghi S.; (2022) Water Pollution and Agriculture Pesticide. Clean Technologies, 4, 1088–1102. https://doi.org/10.3390/CLEANTECHNOL4040066.
Sharma RK.; Gulati S.; (2014) Water Quality Issues and Solutions in India. Comprehensive Water Quality and Purification, 1, 21–39. https://doi.org/10.1016/B978-0-12-382182-9.00003-7.
Biswas JK.; Rai M.; Mondal M.; Ingle AP.; (2018) The Flop Side of Using Heavy Metal(oids)s in the Traditional Medicine: Toxic Insults and Injury to Human Health. In Biomedical Applications of Metals; Rai, M., Ingle, A., Medici, S., Eds.; Springer: Cham, Switzerland, pp. 257–276. https://doi.org/10.1007/978-3-319-74814-6_12.
J Eruption parameters elicitation for volcanoes in Ethiopia and Kenya Informing a World Bank GFDRR project on volcanic threat in sub-Saharan Africa. (accessed 25 July 2023) Available online: https://ui.adsabs.harvard.edu/abs/2016EGUGA..1814305J/abstract.
Bo A.; Sarina S.; Liu H.; Zheng, Z.; Xiao, Q.; Ayoko, G.A.; Zhu, H. (2016) Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters. ACS Applied Materials and Interfaces 8, 16503–16510. https://doi.org/10.1021/ACSAMI.6B04632.
Ismail, W.N.W.; Mokhtar, S.U. (2020) Various Methods for Removal, Treatment, and Detection of Emerging Water Contaminants. IntechOpen. https://doi.org/10.5772/INTECHOPEN.93375.
Portolés T.; Sales C.; Abalos M.; Saul, J.; Abad, E. (2016) Evaluation of the capabilities of atmospheric pressure chemical ionization source coupled to tandem mass spectrometry for the determination of dioxin-like polychlorobiphenyls in complex-matrix food samples. Analytica Chimica Acta, 937, 96–105. https://doi.org/10.1016/J.ACA.2016.06.038.
Guo W.; Pan B.; Sakkiah S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. (2019) Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. International Journal of Environmental Research and Public Health, 16, 4361. https://doi.org/10.3390/IJERPH16224361.
Fei L.; Bilal M.; Qamar SA.; Imran, H.M.; Riasat, A.; Jahangeer, M.; Ghafoor, M.; Ali, N.; Iqbal, H.M.N. (2022) Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. Environmental Research 211, 113060. https://doi.org/10.1016/J.ENVRES.2022.113060.
Gong Y.; Gai L.; Tang J.; Fu, J.; Wang, Q.; Zeng, E.Y. (2017). Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of The Total Environment, 595, 743–751. https://doi.org/10.1016/J.SCITOTENV.2017.03.282.
Abbasian F.; Lockington R.; Palanisami T.; Megharaj, M.; Naidu, R. (2016). Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments. Science of The Total Environment 539, 370–380. https://doi.org/10.1016/J.SCITOTENV.2015.09.031.
Baragaño, D.; Alonso, J.; Gallego, J.R.; Lobo, M.C.; Gil-Diaz, M. (2020). Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere, 238, 124624. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124624.
Chen, J.; Sheng, Y.; Song, Y.; Chang, M.; Zhang, X.; Cui, L.; Meng, D.; Zhu, H.; Shi, Z.; Zou, H. (2018). Multimorphology Mesoporous Silica Nanoparticles for Dye Adsorption and Multicolor Luminescence Applications. ACS Sustainable Chemistry and Engineering, 6, 3533–3545. https://doi.org/10.1021/acssuschemeng.7b03849.
Peres EC.; Slaviero JC.; Cunha AM.; Hosseini-Bandegharaei, A.; Dotto, G.L. (2018). Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. Journal of Environmental Chemical Engineering 6, 649–659. https://doi.org/10.1016/J.JECE.2017.12.062.
Aguilar-Pérez KM.; Heya MS.; Parra-Saldívar R.; Iqbal HMN. (2020). Nano-biomaterials in-focus as sensing/detection cues for environmental pollutants. Case Studies in Chemical and Environmental Engineering, 2, 100055. https://doi.org/10.1016/J.CSCEE.2020.100055.
Aguilar-Pérez KM.; Avilés-Castrillo JI.; Ruiz-Pulido G.; Medina, D.I.; Parra-Saldivar, R.; Iqbal, H.M.N. (2021). Nanoadsorbents in focus for the remediation of environmentally-related contaminants with rising toxicity concerns. Science of The Total Environment, 779, 146465. https://doi.org/10.1016/J.SCITOTENV.2021.146465.
Wang J.; Chen B. (2015). Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chemical Engineering Journal, 281, 379–388. https://doi.org/10.1016/J.CEJ.2015.06.102.
Huang Z.; Xu P.; Chen G.; Zeng, G.; Chen, A.; Song, Z.; He, K.; Yuan, L.; Li. H.; Hu, L. (2018). Silver ion-enhanced particle-specific cytotoxicity of silver nanoparticles and effect on the production of extracellular secretions of Phanerochaete chrysosporium. Chemosphere 196, 575–584. https://doi.org/10.1016/J.CHEMOSPHERE.2017.12.185.
Gan JS.; Li XB.; Rizwan K.; Adeel, M.; Bilal, M.; Rasheed, T.; Iqbal, H.M.N. (2022). Covalent organic frameworks-based smart materials for mitigation of pharmaceutical pollutants from aqueous solution. Chemosphere, 286, 131710. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131710.
Gan JS.; Bagheri AR.; Aramesh N.; Gul., I.; Franco, M.; Almulaiky, Y.Q.; Bilal, M. (2021). Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis – A review. International Journal of Biological Macromolecules, 167, 502–515. https://doi.org/10.1016/J.IJBIOMAC.2020.12.002.
Wang J.; Zhuang S. (2019). Covalent organic frameworks (COFs) for environmental applications. Coordination Chemistry Reviews, 400, 213046. https://doi.org/10.1016/J.CCR.2019.213046.
Ali N.; Bilal M.; Khan A.; Ali, F.; Yang, Y.; Malik, S.; Din, S.U.; Iqbal, H.M.N. (2021). Deployment of metal-organic frameworks as robust materials for sustainable catalysis and remediation of pollutants in environmental settings. Chemosphere, 272, 129605. https://doi.org/10.1016/J.CHEMOSPHERE.2021.129605.
Li Y.; Liu Q.; Li W.; Lu, Y.; Meng, H.: Li, C. (2017). Efficient destruction of hexachlorobenzene by calcium carbide through mechanochemical reaction in a planetary ball mill. Chemosphere, 166, 275–280. https://doi.org/10.1016/J.CHEMOSPHERE.2016.09.135.
Gao Y.; Li S.; Li Y.; Yao, L.; Zhang, H. (2017). Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 202, 165–174. https://doi.org/10.1016/J.APCATB.2016.09.005.
Drout, R.J.; Otake, K.; Howarth, A.J.; Islamoglu, T.; Zhu, L.; Xiao, C.; Wang, S.; Farha, O.K. (2018). Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal-Organic Framework and Examination of Anion Binding Motifs. Chemistry of Materials, 30, 1277–1284. https://doi.org/10.1021/acs.chemmater.7b04619.
Kato S.; Otake KI.; Chen H.; Akpinar, I.; Buru, C.T.; Islamoglu, T, Snurr, R.Q.; Farha, O.K. (2019). Zirconium-Based Metal-Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. Journal of the American Chemical Society, 141, 2568–2576. https://doi.org/10.1021/jacs.8b12525.
Wagner M.; Andrew Lin KY.; Oh W Da.; Lisak G. (2021). Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption – A mini review. Journal of Hazardous Materials, 413, 125325. https://doi.org/10.1016/J.JHAZMAT.2021.125325.
Performance evaluation of sewage treatment plants under NRCD. (Accessed on 19 October 2021) Available online: https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMjlfMTQ1ODExMDk5Ml9OZXdJdGVtXzE5NV9TVFBfUkVQT1JULnBkZg==.
U.S. Lowers Recommended Fluoride Levels in Drinking Water – WebMD. (Accessed on 19 October 2021) Available online: https://www.webmd.com/oral-health/news/20150427/us-lowers-recommended-fluoride-levels-in-drinking-water.
Khatri, N.; Tyagi S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Fontiers in Life Science, 8, 23–39. https://doi.org/10.1080/21553769.2014.933716.
Gueddari H.; Akodad M.; Baghour M.; Moumen, A.; Skalli, A.; Yousfi, Y.E.; Ismail, A.; Chahban, M.; Azizi, G.; Hmeid, H.A.; Zahid, M. (2022). The salinity origin and hydrogeochemical evolution of groundwater in the Oued Kert basin, north‐eastern of Morocco. Scientific African, 16, e01226. https://doi.org/10.1016/J.SCIAF.2022.E01226.
Haule K.; Freda W. (2021). Remote Sensing of Dispersed Oil Pollution in the Ocean—The Role of Chlorophyll Concentration. Sensors, 21, 3387. https://doi.org/10.3390/S21103387.
Henson, M.C.; Chedrese, P.J. (2016). Endocrine Disruption by Cadmium, a Common Environmental Toxicant with Paradoxical Effects on Reproduction: Experimental Biology and Medicine, 229, 383–392. https://doi.org/10.1177/153537020422900506.
Sharma S.; Bhattacharya A. (2016). Drinking water contamination and treatment techniques. Applied Water Science, 7, 1043–1067. https://doi.org/10.1007/S13201-016-0455-7.
Bratec T.; Kirchhübel N.; Baranovskaya N.; Laratte, B.; Jolliet, O.; Rikhvanov, L.; Fantke, P. (2019). Towards integrating toxicity characterization into environmental studies: case study of bromine in soils. Environmental Science and Pollution Research, 26, 19814–19827. https://doi.org/10.1007/s11356-019-05244-5.
Wanninayake, D.M. (2021). Comparison of currently available PFAS remediation technologies in water: A review. Journal of Environmental Management, 283, 111977. https://doi.org/10.1016/J.JENVMAN.2021.111977.
Othman, N.H.; Alias, N.H.; Fuzil, N.S.; Marpani, F,; Zhahruddin, M.Z.; Chew, C.M.; Ng, K.M.D.; Lau, W.J.; Ismail, A.F. (2022). A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes 12, 30. https://doi.org/10.3390/MEMBRANES12010030.
Liu J.; Yue M.; Zhao L.; He, J.; Wu, X.; Wang, L. (2021) Semi batch dual-pass nanofiltration as scaling-controlled pretreatment for seawater purification and concentration with high recovery rate. Desalination, 506, 115015. https://doi.org/10.1016/J.DESAL.2021.115015.
Chowdhury, S.; Koyappathody, T.M.F.; Karanfil, T.; (2022). Removal of halides from drinking water: technological achievements in the past ten years and research needs. Environmental Science and Pollution Research 29, 55514–55527. https://doi.org/10.1007/s11356-022-21346-z.
Chang, C.M.; Edwards, S.H.; Arab, A.; Del Valle-Pinero, A.Y.; Yang, L.; Hatsukami, D.K. (2017). Biomarkers of Tobacco Exposure: Summary of an FDA-Sponsored Public Workshop. Cancer Epidemiology, Biomarkers & Prevention, 26, 291–302. https://doi.org/10.1158/1055-9965.EPI-16-0675.
Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. (2019). Detection and removal of heavy metal ions: a review. Environmental Chemistry Letters, 17, 1495–1521. https://doi.org/10.1007/s10311-019-00891-z.
Rolsky, C.; Kelkar, V.; Driver, E.; Halden, R.U. (2020). Municipal sewage sludge as a source of microplastics in the environment. Current Opinion in Environmental Science & Health, 14, 16–22. https://doi.org/10.1016/J.COESH.2019.12.001.
Ding L.; Huang D.; Ouyang Z.; Guo X. (2022). The effects of microplastics on soil ecosystem: A review. Current Opinion in Environmental Science & Health, 26, 100344. https://doi.org/10.1016/J.COESH.2022.100344.
Wright SL.; Thompson RC.; Galloway TS. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492. https://doi.org/10.1016/J.ENVPOL.2013.02.031.
Mariano S.; Tacconi S.; Fidaleo M.; Rossi, M. (2021). Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Frontiers in Toxicology, 3, 2. https://doi.org/10.3389/FTOX.2021.636640.
Baruah A.; Sharma A.; Sharma S.; Nagraik R. (2022). An insight into different microplastic detection methods. International Journal of Environmental Science and Technology, 19, 5721–5730. http://doi.org/10.1007/s13762-021-03384-1.
Manikanda Bharath K.; Muthulakshmi AL.; Natesan U. (2023). Microplastic contamination around the landfills: Distribution, characterization and threats: A review. Current Opinion in Environmental Science & Health, 31, 100422. https://doi.org/10.1016/J.COESH.2022.100422.
Lu Y.; Li MC.; Lee J.; Liu.; Mei, C. (2023). Microplastic remediation technologies in water and wastewater treatment processes: Current status and future perspectives. Science of The Total Environment, 868, 161618. https://doi.org/10.1016/J.SCITOTENV.2023.161618.
Ma, J.; Qin, G.; Zhang, Y.; Sun, J.; Wang, S.; Jiang, L. (2018). Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. Journal of Cleaner Production, 182, 776–782. https://doi.org/10.1016/j.jclepro.2018.02.115.
Baptista ATA.; Coldebella PF.; Cardines PHF.; Gomes, R.G.; Vieira, M.F.; Bergamasco, R.; Vieira, A.M.S. (2015). Coagulation–flocculation process with ultrafiltered saline extract of Moringa oleifera for the treatment of surface water. Chemical Engineering Journal, 276, 166–173. https://doi.org/10.1016/J.CEJ.2015.04.045.
Shirasaki N.; Matsushita T.; Matsui Y.; Marubayashi T. (2016). Effect of aluminum hydrolyte species on human enterovirus removal from water during the coagulation process. Chemical Engineering Journal, 284, 786–793. https://doi.org/10.1016/J.CEJ.2015.09.045.
Ma B.; Xue W.; Hu C.; Qu, J,; Li, L. (2019). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 359, 159–167. https://doi.org/10.1016/J.CEJ.2018.11.155.
Li X.; Ling C.; Wang Q.; Feng, C.; Luo, X.; Sha, H.; He, G.; Zou, G.; Liang, H. (2022). Hypoxia Stress Induces Tissue Damage, Immune Defense, and Oxygen Transport Change in Gill of Silver Carp (Hypophthalmichthys molitrix): Evaluation on Hypoxia by Using Transcriptomics. Frontiers in Marine Science, 9, 900200. https://doi.org/10.3389/fmars.2022.900200.
Dubocq F.; Bæringsdóttir BB.; Wang T.; Kärrman A. (2022). Comparison of extraction and clean-up methods for comprehensive screening of organic micropollutants in fish using gas chromatography coupled to high-resolution mass spectrometry. Chemosphere, 286, 131743. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131743.
Hajeb P.; Zhu L.; Bossi R.; Vorkamp K. (2022). Sample preparation techniques for suspect and non-target screening of emerging contaminants. Chemosphere, 287, 132306. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132306.
Huynh N.; Caupos E.; Soares Peirera C.; Le Roux, J.; Bressy, A.; Moilleron, R. (2021). Evaluation of Sample Preparation Methods for Non-Target Screening of Organic Micropollutants in Urban Waters Using High-Resolution Mass Spectrometry. Molecules, 26, 7064. https://doi.org/10.3390/MOLECULES26237064.
GilPavas E.; Dobrosz-Gómez I.; Gómez-García MÁ. (2018). Optimization of sequential chemical coagulation - electro-oxidation process for the treatment of an industrial textile wastewater. Journal of Water Process Engineering, 22, 73–79. https://doi.org/10.1016/J.JWPE.2018.01.005.
Ensano BMB.; Borea L.; Naddeo V.; Belgiorno, V.; de Luna, M.D.G.; Balakrishnan, M.; Ballesteros Jr., F.C. (2019). Applicability of the electrocoagulation process in treating real municipal wastewater containing pharmaceutical active compounds. Journal of Hazardous Materials, 361, 367–373. https://doi.org/10.1016/J.JHAZMAT.2018.07.093.
Purohit R.; Bharti D. (2022). The Rapid Pcr Detection Of Potentially Pathogenic Bacteria In The Drinking Water Of Different Sources From Bhopal District Of Madhya Pradesh. Journal of Pharmaceutical Negative Results, 13, 2880–2884. https://doi.org/10.47750/PNR.2022.13.S05.434.
Anand U.; Adelodun B.; Pivato A.; Suresh, S.; Indari, O.; Jakhmola, S.; Jha, H.C.; Jha, P.K.; Tripathi, V.; Di Maria, F. (2021). A review of the presence of SARS-CoV-2 RNA in wastewater and airborne particulates and its use for virus spreading surveillance. Environmental Research, 196, 110929. https://doi.org/10.1016/J.ENVRES.2021.110929.
Anand U.; Li X.; Sunita K.; Lokhandwala, S.; Gautam, P.; Suresh, S.; Sarma, H.; Vellingiri, B.; Dey, A.; Bontempi, E.; Jiang, G. (2022). SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: A review about virus surveillance, infectivity, and inactivation. Environmental Research, 203, 111839. https://doi.org/10.1016/J.ENVRES.2021.111839.
Nasser AM. (2016). Removal of Cryptosporidium by wastewater treatment processes: a review. Journal of Water and Health, 14, 1–13. https://doi.org/10.2166/WH.2015.131.
Ferrari S.; Frosth S.; Svensson L.; Fernstrom, L.L.; Skarin, H.; Hansson, I. (2019). Detection of Campylobacter spp. in water by dead‐end ultrafiltration and application at farm level. Journal of Applied Microbiology, 127, 1270–1279. https://doi.org/10.1111/JAM.14379.
Liu X.; Yao H.; Zhao X.; Ge C. (2023). Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules, 28, 2432. https://doi.org/10.3390/MOLECULES28062432.
Saxena, R.; Ansari, S.; Fatima, A.; Srivastava, N.; Singh, N.; Maurya, V.K.; Rai, P.K. (2022). Microbes in drinking water: Control and prevention, 6, 203–222. https://doi.org/10.1016/B978-0-323-91838-1.00024-5.
Liu X.; Hu X.; Wang J.; Song, Y.; Wang, M.; Liu, R.; Duan, L. (2015) Evaluating properties of protein in waste activated sludge for volatile fatty acid production: effect of pH. Environmental Earth Sciences, 73, 5047–5056. https://doi.org/10.1007/s12665-015-4194-0.
Zhang Y.; Geißen SU.; Gal C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73, 1151–1161. https://doi.org/10.1016/J.CHEMOSPHERE.2008.07.086.
SUBMITTED: 03 June 2023
ACCEPTED: 30 July 2023
PUBLISHED:
3 August 2023
SUBMITTED to ACCEPTED: 57 days
DOI:
https://doi.org/10.53623/idwm.v3i2.264