Microplastics have permeated all parts of the environment, rendering their removal essential. Numerous strategies ranging from the physical removal of mismanaged plastic items to the biodegradation of microplastics with microorganisms and biocatalysts have been proposed to alleviate microplastic pollution. Phytoremediation is one of the plastic-removing strategies, but it has not received much attention. This perspective paper aims to review the phytoremediation of microplastics and discuss its practicality. The paper shows that plants could act as interceptors and a temporary sink of microplastics by facilitating their deposition, adsorbing them, trapping them in the root zone, enabling them to cluster on the roots, taking them up, translocating them, and accumulating them in various plant parts. However, there was a lack of evidence pointing to the degradation of microplastics after they were adsorbed, taken up, and stored. Weak adsorption and environmental factors may cause the trapped microplastics to desorb, resuspend, or evade, thus also making plants a source of microplastics. The microplastics trapped and accumulated in plants may be transferred to the higher trophic levels of the food chain through ingestion and raise concerns over their ecotoxicities. Unlike localized pollution, microplastic pollution is widespread, which limits the applicability of phytoremediation. Besides, microplastics could adversely impact plant health and the ability of plants to remove other environmental pollutants. These drawbacks may reduce the attractiveness of phytoremediation unless it can be effectively combined with bioremediation to degrade microplastics.
Tang, K.H.D.; Luo, Y. (2023). Abundance and Characteristics of Microplastics in the Soil of a Higher Education Institution in China. Tropical Aquatic and Soil Pollution, 3, 1–14. https://doi.org/10.53623/tasp.v3i1.152.
Tang, K.H.D. (2023). Microplastics in agricultural soils in China: Sources, impacts and solutions. Environmental Pollution, 322, 121235. https://doi.org/https://doi.org/10.1016/j.envpol.2023.121235.
Tang, K.H.D. (2022). Abundance of Microplastics in Wastewater Treatment Sludge. Journal of Human, Earth, and Future, 3, 138–146.
Zhao, X.; Zhou, Y.; Liang, C.; Song, J.; Yu, S.; Liao, G.; Zou, P.; Tang, K.H.D.; Wu, C. (2023). Airborne microplastics: Occurrence, sources, fate, risks and mitigation. Science of The Total Environment, 858, 159943. https://doi.org/10.1016/j.scitotenv.2022.159943.
Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. (2020). Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research, 187, 109677. https://doi.org/10.1016/j.envres.2020.109677.
Karami; A.; Golieskardi; A.; Choo; C.K.; Larat; V.; Karbalaei; S.; Salamatinia; B. (2018). Microplastic and mesoplastic contamination in canned sardines and sprats. Science of The Total Environment, 612, 1380–1386. https://doi.org/10.1016/j.scitotenv.2017.09.005.
Mercogliano; R.; Avio; C.G.; Regoli; F.; Anastasio; A.; Colavita; G.; Santonicola; S. (2020). Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review. Journal of Agricultural and Food Chemistry, 68, 5296–5301. https://doi.org/10.1021/acs.jafc.0c01209.
Udovicki; B.; Andjelkovic; M.; Cirkovic-Velickovic; T.; & Rajkovic; A. (2022). Microplastics in food: scoping review on health effects, occurrence, and human exposure. International Journal of Food Contamination, 9, 7. https://doi.org/10.1186/s40550-022-00093-6.
Karbalaei; S.; Hanachi; P.; Walker; T.R.; Cole; M. (2018). Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environmental Science and Pollution Research, 25, 36046–36063. https://doi.org/10.1007/s11356-018-3508-7.
Andrady, A.L. (2017). The plastic in microplastics: A review. Marine Pollution Bulletin, 119, 12–22. https://doi.org/10.1016/j.marpolbul.2017.01.082.
Bermúdez, J.R.; Swarzenski, P.W. (2021). A microplastic size classification scheme aligned with universal plankton survey methods. MethodsX, 8, 101516. https://doi.org/10.1016/j.mex.2021.101516.
Tibbetts, J.; Krause, S.; Lynch, I.; Sambrook Smith, G.H. (2018). Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments. Water, 10, 11. https://doi.org/10.3390/w10111597.
Wang, Y.; Huang, J.; Zhu, F.; Zhou, S. (2021). Airborne Microplastics: A Review on the Occurrence, Migration and Risks to Humans. Bulletin of Environmental Contamination and Toxicology, 107, 657–664. https://doi.org/10.1007/s00128-021-03180-0.
Gurumoorthi, K.; Luis, A.J. (2023). Recent trends on microplastics abundance and risk assessment in coastal Antarctica: Regional meta-analysis. Environmental Pollution, 324, 121385. https://doi.org/10.1016/j.envpol.2023.121385.
Tang, K.H.D. (2020). Ecotoxicological Impacts of Micro and Nanoplastics on Marine Fauna. Examines in Marine Biology and Oceanography, 3, 1–5. https://doi.org/10.31031/EIMBO.2020.03.000563.
Rafiee, M.; Dargahi, L.; Eslami, A.; Beirami, E.; Jahangiri-rad, M.; Sabour, S.; Amereh, F. (2018). Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere, 193, 745–753. https://doi.org/10.1016/j.chemosphere.2017.11.076.
Hesler, M.; Aengenheister, L.; Ellinger, B.; Drexel, R.; Straskraba, S.; Jost, C.; Wagner, S.; Meier, F.; von Briesen, H.; Büchel, C.; Wick, P.; Buerki-Thurnherr, T.; Kohl, Y. (2019). Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicology in Vitro, 61, 104610. https://doi.org/10.1016/j.tiv.2019.104610.
Tang, K.H.D. (2023). Attitudes towards Plastic Pollution: A Review and Mitigations beyond Circular Economy. Waste, 1, 569–587. https://doi.org/10.3390/waste1020034.
Tang, K.H.D. (2023). Enhanced plastic economy: a perspective and a call for international action. Environmental Science: Advances, 2, 1011-1018. https://doi.org/10.1039/D3VA00057E.
Cordier, M.; Uehara, T. (2019). How much innovation is needed to protect the ocean from plastic contamination? Science of The Total Environment, 670, 789–799. https://doi.org/10.1016/j.scitotenv.2019.03.258.
Poerio, T.; Piacentini, E.; Mazzei, R. (2019). Membrane processes for microplastic removal. Molecules, 24, 4148. https://doi.org/10.3390/molecules24224148.
Wang, Z.; Sedighi, M.; Lea-Langton, A. (2020). Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Research, 184, 116165. https://doi.org/10.1016/j.watres.2020.116165.
Miri, S.; Saini, R.; Davoodi, S.M.; Pulicharla, R.; Brar, S.K.; Magdouli, S. (2022). Biodegradation of microplastics: Better late than never. Chemosphere, 286, 131670. https://doi.org/10.1016/j.chemosphere.2021.131670.
Sánchez, C. (2020). Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnology Advances, 40, 107501. https://doi.org/10.1016/j.biotechadv.2019.107501.
Ronkvist, Å.M.; Xie, W.; Lu, W.; Gross, R.A. (2009). Cutinase-Catalyzed Hydrolysis of Poly(ethylene terephthalate). Macromolecules, 42, 5128–5138. https://doi.org/10.1021/ma9005318.
Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. (2022). Biodegradation of plastic polymers by fungi: a brief review. Bioresources and Bioprocessing, 9, 42. https://doi.org/10.1186/s40643-022-00532-4.
Carniel, A.; Valoni, É.; Nicomedes, J.; Gomes, A. da C.; de Castro, A.M. (2017). Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochemistry, 59, 84–90. https://doi.org/10.1016/j.procbio.2016.07.023.
Souza, P.M. de; Bittencourt, M.L. de A.; Caprara, C.C.; Freitas, M. de; Almeida, R.P.C. de; Silveira, D.; Fonseca, Y.M.; Ferreira Filho, E.X.; Pessoa Junior, A.; Magalhães, P.O. (2015). A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46, 337–346. https://doi.org/10.1590/S1517-838246220140359.
Schwaminger, S.P.; Fehn, S.; Rauwolf, S.; Steegmüller, T.; Löwe, H.; Pflüger-Grau, K.; Berensmeier, S. (2021). Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET. Nanoscale Advances, 3, 4395-4399.
Ma, Y.; Yao, M.; Li, B.; Ding, M.; He, B.; Chen, S.; Zhou, X.; Yuan, Y. (2018). Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering. Engineering, 4, 888–893. https://doi.org/10.1016/j.eng.2018.09.007.
Chia, W.Y.; Ying Tang, D.Y.; Khoo, K.S.; Kay Lup, A.N.; Chew, K.W. (2020). Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology, 4, 100065. https://doi.org/10.1016/j.ese.2020.100065.
Kumar, R.V.; Kanna, G.R.; Elumalai, S. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediationa and Biodegradation, 8, 1000381.
Tang, K.H.D.; Hadibarata, T. (2022). The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective. Bioprocess and Biosystems Engineering, 45, 1865–1878. https://doi.org/10.1007/s00449-022-02793-x.
Mateos-Cárdenas, A.; Scott, D.T.; Seitmaganbetova, G.; Frank, N.A.M. van P.; John, O.; Marcel A.K.J. (2019). Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Science of The Total Environment, 689, 413–421. https://doi.org/10.1016/j.scitotenv.2019.06.359.
Rozman, U.; Jemec Kokalj, A.; Dolar, A.; Drobne, D.; Kalčíková, G. (2022). Long-term interactions between microplastics and floating macrophyte Lemna minor: The potential for phytoremediation of microplastics in the aquatic environment. Science of The Total Environment, 831, 154866. https://doi.org/10.1016/j.scitotenv.2022.154866.
Gao, M.; Liu, Y.; Dong, Y.; Song, Z. (2021). Effect of polyethylene particles on dibutyl phthalate toxicity in lettuce (Lactuca sativa L.). Journal of Hazardous Materials, 401, 123422. https://doi.org/10.1016/j.jhazmat.2020.123422.
Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobučar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831–838. https://doi.org/10.1016/j.envpol.2019.04.055.
Li, R.; Zhang, L.; Xue, B.; Wang, Y. (2019). Abundance and characteristics of microplastics in the mangrove sediment of the semi-enclosed Maowei Sea of the south China sea: New implications for location, rhizosphere, and sediment compositions. Environmental Pollution, 244, 685–692. https://doi.org/10.1016/j.envpol.2018.10.089.
Giorgetti, L.; Spanò, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellani, L.; Ruffini Castiglione, M. (2020). Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiology and Biochemistry, 149, 170–177. https://doi.org/10.1016/j.plaphy.2020.02.014.
Sun, X.-D.; Yuan, X.-Z.; Jia, Y.; Feng, L.-J.; Zhu, F.-P.; Dong, S.-S.; Liu, J.; Kong, X.; Tian, H.; Duan, J.-L.; Ding, Z.; Wang, S.-G.; Xing, B. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15, 755–760. https://doi.org/10.1038/s41565-020-0707-4.
Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226, 774–781. https://doi.org/10.1016/j.chemosphere.2019.03.163.
Helcoski, R.; Yonkos, L.T.; Sanchez, A.; Baldwin, A.H. (2020). Wetland soil microplastics are negatively related to vegetation cover and stem density. Environmental Pollution, 256, 113391. https://doi.org/10.1016/j.envpol.2019.113391.
Liu, K.; Wang, X.; Song, Z.; Wei, N.; Li, D. (2020). Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Science of the Total Environment, 742. https://doi.org/10.1016/j.scitotenv.2020.140523.
Tang, K.H.D.; Awa, S.H.; Hadibarata, T. (2020). Phytoremediation of Copper-Contaminated Water with Pistia stratiotes in Surface and Distilled Water. Water, Air, & Soil Pollution, 231, 573. https://doi.org/10.1007/s11270-020-04937-9.
Tang, K.H.D.; Law, Y.W.E. (2019). Phytoremediation of soil contaminated with crude oil using Mucuna Bracteata. Research in Ecology, 1(1).
Li, L.; Luo, Y.; Peijnenburg, W. J. G. M.; Li, R.; Yang, J.; Zhou, Q. (2020). Confocal measurement of microplastics uptake by plants. MethodsX, 7, 100750. https://doi.org/10.1016/j.mex.2019.11.023.
Zhang, T.-R.; Wang, C.-X.; Dong, F.-Q.; Gao, Z.-Y.; Zhang, C.-J.; Zhang, X.-J.; Fu, L.-M.; Wang, Y.; Zhang, J.-P. (2019). Uptake and Translocation of Styrene Maleic Anhydride Nanoparticles in Murraya exotica Plants As Revealed by Noninvasive, Real-Time Optical Bioimaging. Environmental Science & Technology, 53, 1471–1481. https://doi.org/10.1021/acs.est.8b05689.
Austen, K.; MacLean, J.; Balanzategui, D.; Hölker, F. (2022). Microplastic inclusion in birch tree roots. Science of The Total Environment, 808, 152085. https://doi.org/10.1016/j.scitotenv.2021.152085.
Manjate, E.; Ramos, S.; Almeida, C.M.R. (2020). Potential interferences of microplastics in the phytoremediation of Cd and Cu by the salt marsh plant Phragmites australis. Journal of Environmental Chemical Engineering, 8, 103658. https://doi.org/10.1016/j.jece.2020.103658.
Yu, Q.; Gao, B.; Wu, P.; Chen, M.; He, C.; Zhang, X. (2023). Effects of microplastics on the phytoremediation of Cd, Pb, and Zn contaminated soils by Solanum photeinocarpum and Lantana camara. Environmental Research, 231, 116312. https://doi.org/10.1016/j.envres.2023.116312.
Rillig, M. C.; Ziersch, L.; Hempel, S. (2017). Microplastic transport in soil by earthworms. Scientific Reports, 7, 1362. https://doi.org/10.1038/s41598-017-01594-7.
Tang, K.H.D. (2020). Effects of Microplastics on Agriculture: A Mini-review. Asian Journal of Environment & Ecology, 13, 1–9. https://doi.org/10.9734/ajee/2020/v13i130170.
Tang, K.H.D. (2023). Environmental Co-existence of Microplastics and Perfluorochemicals: A Review of Their Interactions. Biointerface Research in Applied Chemistry, 13, 587.
Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. (2023). Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms,11, 7. https://doi.org/10.3390/microorganisms11071661.
Ekanayaka, A.H.; Tibpromma, S.; Dai, D.; Xu, R.; Suwannarach, N.; Stephenson, S.L.; Dao, C.; Karunarathna, S.C. (2022). A Review of the Fungi That Degrade Plastic. Journal of Fungi, 8, 8. https://doi.org/10.3390/jof8080772.
SUBMITTED: 04 August 2023
ACCEPTED: 12 September 2023
PUBLISHED:
21 September 2023
SUBMITTED to ACCEPTED: 39 days
DOI:
https://doi.org/10.53623/idwm.v3i2.291