Skip to main content

Nanoparticles in Soil Remediation: Challenges and Opportunities

Author(s): Wei Xuen New 1 , Joseph Ekhebume Ogbezode 2 , Paran Gani 1
Author(s) information:
1 Department of Civil & Construction Engineering, Faculty of Engineering and Science, Curtin Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
2 Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria

Corresponding author

Nanoremediation emerges as a promising technology for mitigating soil contamination, encompassing various nanotechnology applications, including chemical degradation, Fenton-type oxidation, photocatalytic degradation, immobilization, and integration with bioremediation techniques like phytoremediation. In addressing soil pollution, the most extensively researched nanomaterials (NMs) are based on carbon, metal and metal oxide, nZVI, and other nanocomposites. Nevertheless, limitations accompany the use of NMs in soil remediation. To assess whether nanotechnology applications outweigh environmental threats, it is crucial to investigate potential effects of NMs on terrestrial vegetation, soil organisms, and human well-being. The impacts of NMs on ecology and the soil environment must be taken into consideration when formulating remediation strategies. Future directions for applied and fundamental studies could include developing multifaceted nanocomposites, integrating them with technologies like bioremediation. Additionally, exploring real-time control and monitoring of NMs and their efficacy in removing pollutants is worth consideration. Pursuing these avenues is vital for advancing the field of soil remediation and comprehending the impact of nanotechnology on the environment.

Previous article

Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. (2018). Nanotechnology for Environmental Remediation: Materials and Applications. Molecules, 23, 1760. https://doi.org/10.3390%2Fmolecules23071760.

Vaseashta, A.; Vaclavikova, M.; Vaseashta, S.; Gallios, G.; Roy, P.; Pummakarnchana, O. (2007). Nanostructures in environmental pollution detection, monitoring, and remediation. Science and Technology of Advanced Materials, 8, 47-59. http://doi/org/10.1016/j.stam.2006.11.003.

Tratnyek, P.G.; Johnson, R.L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44-48. https://doi.org/10.1016/S1748-0132(06)70048-2.

Shah, K.J.; Imae, T. (2016). Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films. Biomacromolecules, 17, 1653‒1661. http://doi/org/10.1021/acs.biomac.6b00065.

Ojea-Jiménez, I.; López, X.; Arbiol, J.; Puntes, V. (2012). Citrate-Coated Gold Nanoparticles As Smart Scavengers for Mercury(II) Removal from Polluted Waters. ACS Nano, 6, 2253‒2260. http://doi/org/10.1021/nn204313a.

Pal, S.; Tak, Y.K.; Song, J.M. (2007). Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Applied and Environmental Microbiology, 73, 1712‒1720. http://doi/org/doi:10.1128/AEM.02218-06.

Xiu, Z.-m.; Zhang, Q.-b.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J.J. (2012). Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Letters, 12, 4271‒4275. http://doi/org/10.1021/nl301934w.

Alizadeh Fard, M.; Aminzadeh, B.; Vahidi, H. (2013). Degradation of petroleum aromatic hydrocarbons using TiO2 nanopowder film. Environmental Technology, 34, 1183‒1190. http://doi/org/10.1080/09593330.2012.743592.

Bessa da Silva, M.; Abrantes, N.; Nogueira, V.; Gonçalves, F.; Pereira, R. (2016). TiO2 nanoparticles for the remediation of eutrophic shallow freshwater systems: Efficiency and impacts on aquatic biota under a microcosm experiment. Aquatic Toxicology, 178, 58‒71. https://doi.org/10.1016/j.aquatox.2016.07.004.

Gu, J.; Dong, D.; Kong, L.; Zheng, Y.; Li, X. (2012). Photocatalytic degradation of phenanthrene on soil surfaces in the presence of nanometer anatase TiO2 under UV-light. Journal of Environmental Sciences, 24, 2122‒2126. https://doi.org/10.1016/S1001-0742(11)61063-2.

Park, J.-Y.; Lee, I.-H. (2014). Photocatalytic Degradation of 2-Chlorophenol Using Ag-Doped TiO2 Nanofibers and a Near-UV Light-Emitting Diode System. Journal of Nanomaterials, 2014, 250803. http://doi/org/10.1155/2014/250803.

Tungittiplakorn, W.; Lion, L.W.; Cohen, C.; Kim, J.-Y. (2004). Engineered Polymeric Nanoparticles for Soil Remediation. Environmental Science & Technology, 38, 1605‒1610. http://doi/org/10.1021/es0348997.

Cao, X.; Alabresm, A.; Chen, Y.P.; Decho, A.W.; Lead, J. (2020). Improved metal remediation using a combined bacterial and nanoscience approach. Science of The Total Environment, 704, 135378. https://doi.org/10.1016/j.scitotenv.2019.135378.

Rosestolato, D.; Bagatin, R.; Ferro, S. (2015). Electrokinetic remediation of soils polluted by heavy metals (mercury in particular). Chemical Engineering Journal, 264, 16‒23. https://doi.org/10.1016/j.cej.2014.11.074.

Tyler, C.R.; Allan, A.M. (2014). The Effects of Arsenic Exposure on Neurological and Cognitive Dysfunction in Human and Rodent Studies: A Review. Current Environmental Health Reports, 1, 132‒147. http://doi/org/10.1007/s40572-014-0012-1.

Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17, 3782. https://doi.org/10.3390%2Fijerph17113782.

Cempel, M.; Nikel, G. (2006). Nickel: A Review of Its Sources and Environmental Toxicology. Polish Journal of Environmental Studies, 15, 375-382.

Wani, A.L.; Ara, A.; Usmani, J.A. (2016). Lead toxicity: a review. Interdisciplinary Toxicology, 8, 55‒64. http://doi/org/10.1515/intox-2015-0009.

Chasapis, C.T.; Ntoupa, P.-S.A.; Spiliopoulou, C.A.; Stefanidou, M.E. (2020). Recent aspects of the effects of zinc on human health. Archives of Toxicology, 94, 1443‒1460. http://doi/org/10.1007/s00204-020-02702-9.

Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of The Total Environment, 407, 1551‒1561. https://doi.org/10.1016/j.scitotenv.2008.10.061.

Abdu, N.; Agbenin, J.O.; Buerkert, A. (2011). Geochemical assessment, distribution, and dynamics of trace elements in urban agricultural soils under long-term wastewater irrigation in Kano, northern Nigeria. Journal of Plant Nutrition and Soil Science, 174, 447‒458. https://doi.org/10.1002/jpln.201000333.

Horckmans, L.; Swennen, R.; Deckers, J. (2007). Retention and release of Zn and Cd in spodic horizons as determined by pHstat analysis and single extractions. Science of The Total Environment, 376, 86‒99. https://doi.org/10.1016/j.scitotenv.2007.01.077.

Fine, P.; Scagnossi, A.; Chen, Y.; Mingelgrin, U. (2005). Practical and mechanistic aspects of the removal of cadmium from aqueous systems using peat. Environmental Pollution, 138, 358-367. https://doi.org/10.1016/j.envpol.2005.03.003.

Ehi Robert Orhue, U.O.F. (2011). Fate of some heavy metals in soils: a review. Journal of Applied and Natural Science, 3, 131‒138. https://doi.org/10.31018/jans.v3i1.171.

Abdu, N.; Abdullahi, A.A.; Abdulkadir, A. (2017). Heavy metals and soil microbes. Environmental Chemistry Letters, 15, 65-84. http://doi/org/10.1007/s10311-016-0587-x.

Caporale, A.G.; Violante, A. (2016). Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Current Pollution Reports, 2, 15‒27. http://doi/org/10.1007/s40726-015-0024-y.

Sommella, A.; Caporale, A.G.; Denecke, M.A.; Mangold, S.; Pigna, M.; Santoro, A.; Terzano, R.; Violante, A. (2015). Nature and reactivity of layered double hydroxides formed by coprecipitating Mg, Al and As(V): Effect of arsenic concentration, pH, and aging. Journal of Hazardous Materials, 300, 504‒512. https://doi.org/10.1016/j.jhazmat.2015.07.046.

Rajendran, S.; Priya, T.A.K.; Khoo, K.S.; Hoang, T.K.A.; Ng, H.-S.; Munawaroh, H.S.H.; Karaman, C.; Orooji, Y.; Show, P.L. (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere, 287, 132369. https://doi.org/10.1016/j.chemosphere.2021.132369.

Katsoyiannis, A.; Samara, C. (2004). Persistent organic pollutants (POPs) in the sewage treatment plant of Thessaloniki, northern Greece: occurrence and removal. Water Research, 38, 2685‒2698. https://doi.org/10.1016/j.watres.2004.03.027.

Dutta, T.; Kwon, E.; Bhattacharya, S.S.; Jeon, B.H.; Deep, A.; Uchimiya, M.; Kim, K.-H. (2017). Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review. GCB Bioenergy, 9, 990‒1004. https://doi.org/10.1111/gcbb.12363.

Ojewumi, M.E.; Emetere, M.E.; Babatunde, D.E.; Okeniyi, J.O. (2017). In Situ Bioremediation of Crude Petroleum Oil Polluted Soil Using Mathematical Experimentation. International Journal of Chemical Engineering, 2017, 5184760. http://doi/org/10.1155/2017/5184760.

Chakravarty, P.; Chowdhury, D.; Deka, H. (2022). Ecological risk assessment of priority PAHs pollutants in crude oil contaminated soil and its impacts on soil biological properties. Journal of Hazardous Materials, 437, 129325. https://doi.org/10.1016/j.jhazmat.2022.129325.

Sushkova, S.; Minkina, T.; Deryabkina, I.; Rajput, V.; Antonenko, E.; Nazarenko, O.; Yadav, B.K.; Hakki, E.; Mohan, D. (2019). Environmental pollution of soil with PAHs in energy producing plants zone. Science of The Total Environment, 655, 232‒241. https://doi.org/10.1016/j.scitotenv.2018.11.080.

Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5, 169-195. http://doi/org/10.1007/s10311-007-0095-0.

Morillo, E.; Romero, A.S.; Maqueda, C.; Madrid, L.; Ajmone-Marsan, F.; Grcman, H.; Davidson, C.M.; Hursthouse, A.S.; Villaverde, J. (2007). Soil pollution by PAHs in urban soils: a comparison of three European cities. Journal of Environmental Monitoring, 9, 1001‒1008. http://doi/org/10.1039/B705955H.

Neary, K.; Boving, T.B. (2011). The fate of the aqueous phase polycyclic aromatic hydrocarbon fraction in a detention pond system. Environmental Pollution, 159, 2882‒2890. https://doi.org/10.1016/j.envpol.2011.04.046.

Ghosh, P.; Mukherji, S. (2023). Fate, detection technologies and toxicity of heterocyclic PAHs in the aquatic and soil environments. Science of The Total Environment, 892, 164499. https://doi.org/10.1016/j.scitotenv.2023.164499.

De Nicola, F.; Baldantoni, D.; Sessa, L.; Monaci, F.; Bargagli, R.; Alfani, A. (2015). Distribution of heavy metals and polycyclic aromatic hydrocarbons in holm oak plant–soil system evaluated along urbanization gradients. Chemosphere, 134, 91‒97. https://doi.org/10.1016/j.chemosphere.2015.03.069.

Teke, G.; Hubai, K.; Diósi, D.; Kováts, N. (2020). Assessment of Foliar Uptake and Accumulation of Airborne Polyaromatic Hydrocarbons Under Laboratory Conditions. Bulletin of Environmental Contamination and Toxicology, 104, 444‒448. http://doi/org/10.1007/s00128-020-02814-z.

Froehner, S.; Maceno, M.; Machado, K.S. (2011). Predicting bioaccumulation of PAHs in the trophic chain in the estuary region of Paranagua, Brazil. Environmental Monitoring and Assessment, 174, 135‒145. http://doi/org/10.1007/s10661-010-1444-1.

Jiang, X.; Tian, L.; Ma, Y.; Ji, R. (2019). Quantifying the bioaccumulation of nanoplastics and PAHs in the clamworm Perinereis aibuhitensis. Science of The Total Environment, 655, 591‒597. https://doi.org/10.1016/j.scitotenv.2018.11.227.

van der Oost, R.; Beyer, J.; Vermeulen, N.P.E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57‒149. https://doi.org/10.1016/S1382-6689(02)00126-6.

Zhang, C.; Li, Y.; Wang, C.; Feng, Z.; Hao, Z.; Yu, W.; Wang, T.; Zou, X. (2020). Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China: Bioaccumulation and human health risk assessment. Marine Pollution Bulletin, 153, 110995. https://doi.org/10.1016/j.marpolbul.2020.110995.

Barzegar, G.; Jorfi, S.; Soltani, R.D.C.; Ahmadi, M.; Saeedi, R.; Abtahi, M.; Ramavandi, B.; Baboli, Z. (2017). Enhanced Sono-Fenton-Like Oxidation of PAH-Contaminated Soil Using Nano-Sized Magnetite as Catalyst: Optimization with Response Surface Methodology. Soil and Sediment Contamination: An International Journal, 26, 538‒557. http://doi/org/10.1080/15320383.2017.1363157.

Qian, Y.; Qin, C.; Chen, M.; Lin, S. (2020). Nanotechnology in soil remediation − applications vs. implications. Ecotoxicology and Environmental Safety, 201, 110815. https://doi.org/10.1016/j.ecoenv.2020.110815.

Gupta, V.K.; Saleh, T.A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- An overview. Environmental Science and Pollution Research, 20, 2828‒2843. http://doi/org/10.1007/s11356-013-1524-1.

Zhang, W.; Lu, Y.; Sun, H.; Zhang, Y.; Zhou, M.; Song, Q.; Gao, Y. (2019). Effects of multi−walled carbon nanotubes on pyrene adsorption and desorption in soils: The role of soil constituents. Chemosphere, 221, 203‒211. https://doi.org/10.1016/j.chemosphere.2019.01.030.

Sebastian, A.; Nangia, A.; Prasad, M.N.V. (2019). Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice. Journal of Hazardous Materials, 371, 261‒272. https://doi.org/10.1016/j.jhazmat.2019.03.021.

Khanzada, A.K.; Rizwan, M.; Al-Hazmi, H.E.; Majtacz, J.; Kurniawan, T.A.; Mąkinia, J. (2023). Removal of Arsenic from Wastewater Using Hydrochar Prepared from Red Macroalgae: Investigating Its Adsorption Efficiency and Mechanism. Water, 15, 3866. https://doi.org/10.3390/w15213866.

Fenoll, J.; Flores, P.; Hellín, P.; Hernández, J.; Navarro, S. (2014). Minimization of methabenzthiazuron residues in leaching water using amended soils and photocatalytic treatment with TiO2 and ZnO. Journal of Environmental Sciences, 26, 757‒764. https://doi.org/10.1016/S1001-0742(13)60511-2.

Zhu, Y.; Xu, F.; Liu, Q.; Chen, M.; Liu, X.; Wang, Y.; Sun, Y.; Zhang, L. (2019). Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Science of The Total Environment, 662, 414‒421. https://doi.org/10.1016/j.scitotenv.2019.01.234.

Zhang, L.; Li, P.; Gong, Z.; Li, X. (2008). Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. Journal of Hazardous Materials, 158, 478‒484. https://doi.org/10.1016/j.jhazmat.2008.01.119.

Wang, A.n.; Teng, Y.; Hu, X.-f.; Wu, L.-h.; Huang, Y.-j.; Luo, Y.-m.; Christie, P. (2016). Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties. Science of The Total Environment, 541, 348‒355. https://doi.org/10.1016/j.scitotenv.2015.09.023.

Hou, L.; Wang, L.; Royer, S.; Zhang, H. (2016). Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. Journal of Hazardous Materials, 302, 458‒467. https://doi.org/10.1016/j.jhazmat.2015.09.033.

Usman, M.; Hanna, K.; Haderlein, S. (2016). Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies. Science of The Total Environment, 569-570, 179‒190. https://doi.org/10.1016/j.scitotenv.2016.06.135.

Garrido-Ramírez, E.G.; Theng, B.K.G.; Mora, M.L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review. Applied Clay Science, 47, 182‒192. https://doi.org/10.1016/j.clay.2009.11.044.

Zhao, X.; Liu, W.; Cai, Z.; Han, B.; Qian, T.; Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245‒266. https://doi.org/10.1016/j.watres.2016.05.019.

Qian, L.; Shang, X.; Zhang, B.; Zhang, W.; Su, A.; Chen, Y.; Ouyang, D.; Han, L.; Yan, J.; Chen, M. (2019). Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Chemosphere, 215, 739‒745. https://doi.org/10.1016/j.chemosphere.2018.10.030.

Qian, L.; Liu, S.; Zhang, W.; Chen, Y.; Ouyang, D.; Han, L.; Yan, J.; Chen, M. (2019). Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron. Journal of Colloid and Interface Science, 533, 428‒436. https://doi.org/10.1016/j.jcis.2018.08.075.

Zhang, R.; Zhang, N.; Fang, Z. (2018). In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Water Science and Technology, 77, 1622‒1631. http://doi/org/10.2166/wst.2018.039.

El-Temsah, Y.S.; Joner, E.J. (2013). Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere, 92, 131‒137. https://doi.org/10.1016/j.chemosphere.2013.02.039.

Zhang, M.; He, F.; Zhao, D.; Hao, X. (2011). Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter. Water Research, 45, 2401‒2414. https://doi.org/10.1016/j.watres.2011.01.028.

Huang, Y.; Fulton, A.N.; Keller, A.A. (2016). Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Science of The Total Environment, 571, 1029‒1036. https://doi.org/10.1016/j.scitotenv.2016.07.093.

Li, L.; Xu, Z.; Kah, M.; Lin, D.; Filser, J. (2019). Nanopesticides: A Comprehensive Assessment of Environmental Risk Is Needed before Widespread Agricultural Application. Environmental Science & Technology, 53, 7923‒7924. http://doi/org/10.1021/acs.est.9b03146.

Dimkpa, C.O. (2018). Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure. Current Opinion in Environmental Science & Health, 6, 1‒8. https://doi.org/10.1016/j.coesh.2018.06.007.

Elmer, W.H.; White, J.C. (2016). The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano, 3, 1072‒1079. http://doi/org/10.1039/C6EN00146G.

Ogunkunle, C.O.; Jimoh, M.A.; Asogwa, N.T.; Viswanathan, K.; Vishwakarma, V.; Fatoba, P.O. (2018). Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate. Ecotoxicology and Environmental Safety, 155, 86‒-93. https://doi.org/10.1016/j.ecoenv.2018.02.070.

Harikumar P. S. Pillai, J.K. (2016). Nano-Phytotechnological Remediation of Endosulfan Using Zero Valent Iron Nanoparticles. Journal of Environmental Protection, 7, 734‒744. http://doi.org/10.4236/jep.2016.75066.

Singh, J.; Lee, B.-K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management, 170, 88‒96. https://doi.org/10.1016/j.jenvman.2016.01.015.

Zhang, Z.; Ke, M.; Qu, Q.; Peijnenburg, W.J.G.M.; Lu, T.; Zhang, Q.; Ye, Y.; Xu, P.; Du, B.; Sun, L.; et al. (2018). Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environmental Pollution, 239, 689‒697. https://doi.org/10.1016/j.envpol.2018.04.066.

Lin, S.; Reppert, J.; Hu, Q.; Hudson, J.S.; Reid, M.L.; Ratnikova, T.A.; Rao, A.M.; Luo, H.; Ke, P.C. (2009). Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small, 5, 1128‒1132. http://doi/org/https://doi.org/10.1002/smll.200801556.

Jośko, I.; Oleszczuk, P.; Skwarek, E. (2017). Toxicity of combined mixtures of nanoparticles to plants. Journal of Hazardous Materials, 331, 200‒209. https://doi.org/10.1016/j.jhazmat.2017.02.028.

Asadishad, B.; Chahal, S.; Akbari, A.; Cianciarelli, V.; Azodi, M.; Ghoshal, S.; Tufenkji, N. (2018). Amendment of Agricultural Soil with Metal Nanoparticles: Effects on Soil Enzyme Activity and Microbial Community Composition. Environmental Science & Technology, 52, 1908‒1918. http://doi/org/10.1021/acs.est.7b05389.

Ge, Y.; Schimel, J.P.; Holden, P.A. (2011). Evidence for Negative Effects of TiO2 and ZnO Nanoparticles on Soil Bacterial Communities. Environmental Science & Technology, 45, 1659‒1664. http://doi/org/10.1021/es103040t.

Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96‒111. https://doi.org/10.1016/j.taap.2017.05.025.

Patil, S.S.; Shedbalkar, U.U.; Truskewycz, A.; Chopade, B.A.; Ball, A.S. (2016). Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology & Innovation, 5, 10‒21. https://doi.org/10.1016/j.eti.2015.11.001.

Khanna, K.; Kohli, S.K.; Handa, N.; Kaur, H.; Ohri, P.; Bhardwaj, R.; Yousaf, B.; Rinklebe, J.; Ahmad, P. (2021). Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicology and Environmental Safety, 222, 112459. https://doi.org/10.1016/j.ecoenv.2021.112459.

Wang, B.; Gao, C.; Li, X.; Zhang, Y.; Qu, T.; Du, X.; Zheng, J. (2022). Remediation of groundwater pollution by in situ reactive zone: A review. Process Safety and Environmental Protection, 168, 858‒871. https://doi.org/10.1016/j.psep.2022.10.046.

About this article

SUBMITTED: 14 November 2023
ACCEPTED: 17 December 2023
PUBLISHED: 20 December 2023
SUBMITTED to ACCEPTED: 33 days
DOI: https://doi.org/10.53623/idwm.v3i2.357

Cite this article
New, W. X. ., Ogbezode, J. E. ., & Gani, P. (2023). Nanoparticles in Soil Remediation: Challenges and Opportunities. Industrial and Domestic Waste Management, 3(2), 127‒140. https://doi.org/10.53623/idwm.v3i2.357
Accessed
504
Citations
0
Share this article