Vegro C.L.R.; de Almeida, L.F. (2020). Global coffee market: Socio-economic and cultural dynamics. In Coffee Consumption and Industry Strategies in Brazil; de Almeida, L.F., Spers, E.E., Eds.; Woodhead Publishing: Sawston, UK, pp. 3–19. https://doi.org/10.1016/B978-0-12-814721-4.00001-9. DOI: https://doi.org/10.1016/B978-0-12-814721-4.00001-9
Ziska, L.H.; Bradley, B.A.; Wallace, R.D.; Bargeron, C.T.; LaForest, J.H.; Choudhury, R.A.; Garrett, K.A.; Vega, F.E. (2018). Climate Change, Carbon Dioxide, and Pest Biology, Managing the Future: Coffee as a Case Study. Agronomy, 8, 152. https://doi.org/10.3390/agronomy8080152. DOI: https://doi.org/10.3390/agronomy8080152
Koch, H.; Vögele, S.; Hattermann, F.F.; Huang, S. (2015). The impact of climate change and variability on the generation of electrical power. Meteorologische Zeitschrift, 24, 173 - 18824, 173–188. https://doi.org/10.1127/metz/2015/0530. DOI: https://doi.org/10.1127/metz/2015/0530
Chengappa P.G.; Devika, C.M. (2016). Climate Variability Concerns for the Future of Coffee in India : An Exploratory Study. International Journal of Environment, Agriculture, and Biotechnology, 1, 819–826. https://doi.org/10.22161/ijeab/1.4.27. DOI: https://doi.org/10.22161/ijeab/1.4.27
Alfred, R.; Obit, J.H.; Chin, C.P.Y.; Haviluddin, H.; Lim, Y. (2021).Towards Paddy Rice Smart Farming: A Review on Big Data, Machine Learning, and Rice Production Tasks. IEEE Access, 9, 50358–50380. https://doi.org/10.1109/ACCESS.2021.3069449. DOI: https://doi.org/10.1109/ACCESS.2021.3069449
Balafoutis, A.T.; Evert, F.K.V.; Fountas, S. (2020). Smart Farming Technology Trends: Economic and Environmental Effects, Labor Impact, and Adoption Readiness. Agronomy, 10, 743. https://doi.org/10.3390/agronomy10050743. DOI: https://doi.org/10.3390/agronomy10050743
Muniasamy. A. (2020). Machine Learning for Smart Farming: A Focus on Desert Agriculture. in 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, Sep. 2020, pp. 1–5. https://doi.org/10.1109/ICCIT-144147971.2020.9213759. DOI: https://doi.org/10.1109/ICCIT-144147971.2020.9213759
O’Shaughnessy, S.A.; Kim, M.; Lee, S.; Kim, Y.; Kim, H.; Shekailo. J. (2021). Towards smart farming solutions in the U.S. and South Korea: A comparison of the current status. Geography and Sustainability, 2, 312–327, https://doi.org/10.1016/j.geosus.2021.12.002. DOI: https://doi.org/10.1016/j.geosus.2021.12.002
de Vita, F.; Nocera, G.; Bruneo, D.; Tomaselli, V.; Giacalone, D.; Das, S.K. (2020). Quantitative Analysis of Deep Leaf: a Plant Disease Detector on the Smart Edge. In 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, Sep. 2020, pp. 49–56. https://doi.org/10.1109/SMARTCOMP50058.2020.00027. DOI: https://doi.org/10.1109/SMARTCOMP50058.2020.00027
Rahul M.S.P.; Rajesh, m. (2020). Image processing based Automatic Plant Disease Detection and Stem Cutting Robot. in 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, Aug. 2020, pp. 889–894. https://doi.org/10.1109/ICSSIT48917.2020.9214257. DOI: https://doi.org/10.1109/ICSSIT48917.2020.9214257
Collazos-Burbano, D.A.; Cuello, J.L.E.; Villagran-Muniz, m. (2021). Ultrasonic Wave Propagation for Smart Agriculture: an Arabica Coffee Case of Study. in 2021 IEEE UFFC Latin America Ultrasonics Symposium (LAUS), Gainesville, FL, USA, Oct. 2021, pp. 1–4. https://doi.org/10.1109/LAUS53676.2021.9639172. DOI: https://doi.org/10.1109/LAUS53676.2021.9639172
Huang, N.F.; Chou, D.L.; Lee, C.A.; Wu, F.P.; Chuang, A.C.; Chen, Y.H.; Tsai, Y.C. (2020). Smart agriculture: real‐time classification of green coffee beans by using a convolutional neural network. IET Smart Cities, 167–172. https://doi.org/10.1049/iet-smc.2020.0068. DOI: https://doi.org/10.1049/iet-smc.2020.0068
Oré, G.; Alcântara, M.S.; Góes, J.A.; Oliveira, L.P.; Yepes, J.; Teruel, B.; Castro, V.; Bins, L.S.; Castro, F.; Luebeck, D.; Moreira, L.F.; Gabrielli, L.H.; Hernandez-Figueroa, H.E. (2020). Crop Growth Monitoring with Drone-Borne DInSAR. Remote Sensing, 12, 615. https://doi.org/10.3390/rs12040615. DOI: https://doi.org/10.3390/rs12040615
Carrijo, G.L.A.; Oliveira, D.E.; de Assis, G.A.; Carneiro, M.G.; Guizilini, V.C. Souza, J.R. (2017). Automatic Detection of Fruits in Coffee Crops from Aerial Images. In 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), pp. 1-6. DOI: https://doi.org/10.1109/SBR-LARS-R.2017.8215283
Rutayisire, J.; Markon, S.; Raymond., N. (2017). IoT based Coffee quality monitoring and processing system in Rwanda. In 2017 International Conference on Applied System Innovation (ICASI), pp. 1209–1212. https://doi.org/10.1109/ICASI.2017.7988106. DOI: https://doi.org/10.1109/ICASI.2017.7988106
Rajendran, S.; Prasath, T.H.; Revathi, S.; Rajesh, K. (2021). Basic Food Safety Monitoring And Enhancement in Coffee Industry Using IOT. In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 145–148. https://doi.org/10.1109/ICACITE51222.2021.9404609. DOI: https://doi.org/10.1109/ICACITE51222.2021.9404609
Nurwarsito, H.; Kusuma. A.S. (2021). Development of Multipoint LoRa Communication Network On Microclimate Datalogging System With Simple LoRa Protocol. In 2021 3rd International Conference on Electronics Representation and Algorithm (ICERA), pp. 155–160. https://doi.org/10.1109/ICERA53111.2021.9538705. DOI: https://doi.org/10.1109/ICERA53111.2021.9538705
Huang, K.; Shu, L.; Li, K.; Yang, F.; Han, G.; Wang, X.; Pearson, S, (2020). Photovoltaic Agricultural Internet of Things Towards Realizing the Next Generation of Smart Farming. IEEE Access, 76300–76312. https://doi.org/10.1109/ACCESS.2020.2988663. DOI: https://doi.org/10.1109/ACCESS.2020.2988663
Ragazou, K.; Garefalakis, A.; Zafeiriou, E.; Passas, I. (2022). Agriculture 5.0: A New Strategic Management Mode for a Cut Cost and an Energy Efficient Agriculture Sector. Energies, 15, 3113. https://doi.org/10.3390/en15093113. DOI: https://doi.org/10.3390/en15093113
Vanghele, N.A.; Petre,A.A.; Matache, A.; Stanciu, M.M. (2020). Agriculture 5.0 – Review. AAMC, 51, 576–583. https://doi.org/10.52846/AAMC.2021.02.67. DOI: https://doi.org/10.52846/AAMC.2021.02.67
Saiz-Rubio, V.; Rovira-Más. F. (2020). From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy, 10, 207. https://doi.org/10.3390/agronomy10020207. DOI: https://doi.org/10.3390/agronomy10020207
Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. (2021). From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Transactions on Industrial Informatics, 17, 4322–4334. https://doi.org/10.1109/TII.2020.3003910. DOI: https://doi.org/10.1109/TII.2020.3003910
Grant, M.J.; Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies: A typology of reviews. Health Information & Libraries Journal, 26, 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x. DOI: https://doi.org/10.1111/j.1471-1842.2009.00848.x
Davis, J.; Mengersen, K.; Bennett, S.; Mazerolle, L. (2014). Viewing systematic reviews and meta-analysis in social research through different lenses. SpringerPlus, 3, 511. https://doi.org/10.1186/2193-1801-3-511. DOI: https://doi.org/10.1186/2193-1801-3-511
Kitchenham, B.; Pearl Brereton, O.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51, 7–15. https://doi.org/10.1016/j.infsof.2008.09.009. DOI: https://doi.org/10.1016/j.infsof.2008.09.009
Mengist, W.; Soromessa, T.; Legese. G. (2020). Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX, 7, 100777. https://doi.org/10.1016/j.mex.2019.100777. DOI: https://doi.org/10.1016/j.mex.2019.100777
Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5, 210. https://doi.org/10.1186/s13643-016-0384-4. DOI: https://doi.org/10.1186/s13643-016-0384-4
Livio, J.; Hodhod, R. (2018). AI Cupper: A Fuzzy Expert System for Sensorial Evaluation of Coffee Bean Attributes to Derive Quality Scoring. IEEE Transactions on Fuzzy Systems, 26, 3418–3427. https://doi.org/10.1109/tfuzz.2018.2832611. DOI: https://doi.org/10.1109/TFUZZ.2018.2832611
Fernandez, E.O. (2019). Design Optimization of Saltwater Magnesium-Air Battery Using Activated Carbon Derived. In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ), pp. 1–6. https://doi.org/10.1109/hnicem48295.2019.9072915. DOI: https://doi.org/10.1109/HNICEM48295.2019.9072915
Hakim, M.; Djatna, T.; Yuliasih, I. (2020). Deep Learning for Roasting Coffee Bean Quality Assessment Using Computer Vision in Mobile Environment. in 2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 363–370. https://doi.org/10.1109/icacsis51025.2020.9263224. DOI: https://doi.org/10.1109/ICACSIS51025.2020.9263224
Janandi R.; Cenggoro, T.W. (2020). An Implementation of Convolutional Neural Network for Coffee Beans Quality Classification in a Mobile Information System. In 2020 International Conference on Information Management and Technology (ICIMTech), pp. 218–222. https://doi.org/10.1109/icimtech50083.2020.9211257. DOI: https://doi.org/10.1109/ICIMTech50083.2020.9211257
Lemos Escola, J.P.; da Silva, I.N.; Guido, R.C.; Fonseca, E.S. (2021). Wavelet Transform Applied to Coffee Entomology,” in 2021 Signal Processing Symposium (SPSympo), pp. 58–64. https://doi.org/10.1109/spsympo51155.2020.9593404. DOI: https://doi.org/10.1109/SPSympo51155.2020.9593404
Alibayan, J.P.I. (2019). Green Coffee Bean Sorter and Corrector based on Moisture Content using Capacitive Method. In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ), pp. 1–4. doi: https://doi.org/10.1109/hnicem48295.2019.9073477. DOI: https://doi.org/10.1109/HNICEM48295.2019.9073477
Tan, G.P. (2021). Simulation based Coffee Beans Moisture Content Meter with Data Storage using High Frequency Based Measuring Sensor. In 2021 IEEE Region 10 Symposium (TENSYMP), pp. 1–6. doi: https://doi.org/10.1109/tensymp52854.2021.9551005. DOI: https://doi.org/10.1109/TENSYMP52854.2021.9551005
Divyashri, P.; Pinto, L.A.; Mary, L.; Manasa, P.; Dass, S. (2021). The Real-Time Mobile Application for Identification of Diseases in Coffee Leaves using the CNN Model. In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 1694–1700. https://doi.org/10.1109/icesc51422.2021.9532662. DOI: https://doi.org/10.1109/ICESC51422.2021.9532662
Alasco R. (2018). SoilMATTic: Arduino-Based Automated Soil Nutrient and pH Level Analyzer using Digital Image Processing and Artificial Neural Network. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM), pp. 1–5. https://doi.org/10.1109/hnicem.2018.8666264. DOI: https://doi.org/10.1109/HNICEM.2018.8666264
Fuentes, M.S.; Zelaya, N.A.L.; Avila, J.L.O. (2020). Coffee Fruit Recognition Using Artificial Vision and neural NETWORKS. In 2020 5th International Conference on Control and Robotics Engineering (ICCRE), pp. 224–228. https://doi.org/10.1109/iccre49379.2020.9096441. DOI: https://doi.org/10.1109/ICCRE49379.2020.9096441
Arboleda, E.R.; Fajardo, A.C.; Medina, R.P. (2018). Classification of coffee bean species using image processing, artificial neural network and K nearest neighbors. In 2018 IEEE International Conference on Innovative Research and Development (ICIRD), pp. 1–5. https://doi.org/10.1109/icird.2018.8376326. DOI: https://doi.org/10.1109/ICIRD.2018.8376326
García-Cedeño, A. (2019). PLATANO: Intelligent Technological Support Platform for Azuay province Farmers in Ecuador. In 2019 IEEE International Conference on Engineering Veracruz (ICEV), pp. 1–7. https://doi.org/10.1109/icev.2019.8920501. DOI: https://doi.org/10.1109/ICEV.2019.8920501
Kuo, C.J. (2019). Improving Defect Inspection Quality of Deep-Learning Network in Dense Beans by Using Hough Circle Transform for Coffee Industry. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 798–805. https://doi.org/10.1109/smc.2019.8914175. DOI: https://doi.org/10.1109/SMC.2019.8914175
Sosa, J.; Ramírez, J.; Vives, L.; Kemper, G. (2019). An Algorithm For Detection of Nutritional Deficiencies from Digital Images of Coffee Leaves Based on Descriptors and Neural Networks,” in 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), pp. 1–5. doi: https://doi.org/10.1109/stsiva.2019.8730286. DOI: https://doi.org/10.1109/STSIVA.2019.8730286
Balbin, J.R.; Del Valle, C.D.; Lopez, V.J.L.G.; Quiambao, R.F. (2020). Grading and Profiling of Coffee Beans for International Standards Using Integrated Image Processing Algorithms and Back-Propagation Neural Network. In 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1–6. https://doi.org/10.1109/hnicem51456.2020.9400086. DOI: https://doi.org/10.1109/HNICEM51456.2020.9400086
Pizzaia, J.P.L.; Salcides, I.R.; de Almeida, G.M.; Contarato, R.; de Almeida, R. (2018). Arabica coffee samples classification using a Multilayer Perceptron neural network. In 2018 13th IEEE International Conference on Industry Applications (INDUSCON), pp. 80–84. https://doi.org/10.1109/induscon.2018.8627271. DOI: https://doi.org/10.1109/INDUSCON.2018.8627271
Lee, J.Y.; Jeong, Y.S. (2022). Prediction of Defect Coffee Beans Using CNN. In 2022 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 202–205. https://doi.org/10.1109/bigcomp54360.2022.00046. DOI: https://doi.org/10.1109/BigComp54360.2022.00046
Marcos, A.P.; Silva Rodovalho, N.L.; Backes, A.R. (2019). Coffee Leaf Rust Detection Using Convolutional Neural Network. In 2019 XV Workshop de Visão Computacional (WVC), pp. 38–42. https://doi.org/10.1109/wvc.2019.8876931. DOI: https://doi.org/10.1109/WVC.2019.8876931
Lyimo, D.A.; Lakshmi Narasimhan, V.; Mbero, Z.A. (2021). Sensitivity Analysis of Coffee Leaf Rust Disease using Three Deep Learning Algorithms. In 2021 IEEE AFRICON, pp. 1–6. doi: https://doi.org/10.1109/africon51333.2021.9571007. DOI: https://doi.org/10.1109/AFRICON51333.2021.9571007
Javierto, D.P.P.; Martin, J.D.Z.; Villaverde, J.F. (2021). Robusta Coffee Leaf Detection based on YOLOv3- MobileNetv2 model. In 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1–6. https://doi.org/10.1109/hnicem54116.2021.9731899. DOI: https://doi.org/10.1109/HNICEM54116.2021.9731899
Montalbo, F.J.P.; Hernandez, A.A. (2020). An Optimized Classification Model for Coffea Liberica Disease using Deep Convolutional Neural Networks. In 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), pp. 213–218. https://doi.org/10.1109/cspa48992.2020.9068683. DOI: https://doi.org/10.1109/CSPA48992.2020.9068683
Anita, S.; Albarda. (2020). Classification Cherry’s Coffee using k-Nearest Neighbor (KNN) and Artificial Neural Network (ANN). In 2020 International Conference on Information Technology Systems and Innovation (ICITSI), pp. 117–122. https://doi.org/10.1109/icitsi50517.2020.9264927. DOI: https://doi.org/10.1109/ICITSI50517.2020.9264927
Dutta, L.; Rana, A.K. (2021). Disease Detection Using Transfer Learning In Coffee Plants. In 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–4. https://doi.org/10.1109/gcat52182.2021.9587602. DOI: https://doi.org/10.1109/GCAT52182.2021.9587602
Caya, M.V.C.; Maramba, R.G.; Mendoza, J.S.D.; Suman, P.S. (2020). Characterization and Classification of Coffee Bean Types using Support Vector Machine. In 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1–6. https://doi.org/10.1109/hnicem51456.2020.9400144. DOI: https://doi.org/10.1109/HNICEM51456.2020.9400144
Xu, Y.; Shaull, J.; Bavar, T.; Tan, L. (2018). Smart coffee roaster design with connected devices. in 2018 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–5. https://doi.org/10.1109/icce.2018.8326177. DOI: https://doi.org/10.1109/ICCE.2018.8326177
Kumar, M.; Gupta, P.; Madhav, P.; Sachin. Disease Detection in Coffee Plants Using Convolutional Neural Network. In 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 755–760. https://doi.org/10.1109/icces48766.2020.9138000. DOI: https://doi.org/10.1109/ICCES48766.2020.9138000
Caballero E.M.T.; Duke, A.M.R. (2020). Implementation of Artificial Neural Networks Using NVIDIA Digits and OpenCV for Coffee Rust Detection. In 2020 5th International Conference on Control and Robotics Engineering (ICCRE), pp. 246–251. https://doi.org/10.1109/iccre49379.2020.9096435. DOI: https://doi.org/10.1109/ICCRE49379.2020.9096435
Kuo C.J. (2019). A Labor-Efficient GAN-based Model Generation Scheme for Deep-Learning Defect Inspection among Dense Beans in Coffee Industry. In 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pp. 263–270. https://doi.org/10.1109/coase.2019.8843259. DOI: https://doi.org/10.1109/COASE.2019.8843259
Beegam, K.S.; Shenoy, M.V.; Chaturvedi, N. (2021). Hybrid Consensus and Recovery Block-Based Detection of Ripe Coffee Cherry Bunches Using RGB-D Sensor. IEEE Sensors Journal, 22, 732–740. https://doi.org/10.1109/jsen.2021.3130747. DOI: https://doi.org/10.1109/JSEN.2021.3130747
Baeta, R.; Nogueira, K.; Menotti, D.; dos Santos, J.A. (2017). Learning Deep Features on Multiple Scales for Coffee Crop Recognition. In 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 262–268. https://doi.org/10.1109/sibgrapi.2017.41. DOI: https://doi.org/10.1109/SIBGRAPI.2017.41
Korzh, O.; Cook, G.; Andersen, T.; Serra, E. (2017). Stacking approach for CNN transfer learning ensemble for remote sensing imagery. In 2017 Intelligent Systems Conference (IntelliSys), pp. 599–608. https://doi.org/10.1109/intellisys.2017.8324356. DOI: https://doi.org/10.1109/IntelliSys.2017.8324356
Harsono, W.; Sarno, R.; Sabilla, S.I. (2020). Recognition of Original Arabica Civet Coffee based on Odor using Electronic Nose and Machine Learning. In 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 333–339. https://doi.org/10.1109/isemantic50169.2020.9234234. DOI: https://doi.org/10.1109/iSemantic50169.2020.9234234
Pinto, C.; Furukawa, J.; Fukai, H.; Tamura, S. (2017). Classification of Green coffee bean images basec on defect types using convolutional neural network (CNN). In 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), pp. 1–5. https://doi.org/10.1109/icaicta.2017.8090980. DOI: https://doi.org/10.1109/ICAICTA.2017.8090980
Buzura, L.; Budileanu, M.L.; Potarniche, A.; Galatus, R. (2021). Python based portable system for fast characterisation of foods based on spectral analysis. In 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), pp. 275–280. https://doi.org/10.1109/siitme53254.2021.9663677. DOI: https://doi.org/10.1109/SIITME53254.2021.9663677
Thazin, Y.; Pobkrut, T.; Kerdcharoen, T. (2018). Prediction of Acidity Levels of Fresh Roasted Coffees Using E-nose and Artificial Neural Network. In 2018 10th International Conference on Knowledge and Smart Technology (KST), pp. 210–215. https://doi.org/10.1109/kst.2018.8426206. DOI: https://doi.org/10.1109/KST.2018.8426206
Gorokhovatskyi, O.; Peredrii, O. (2018). Shallow Convolutional Neural Networks for Pattern Recognition Problems. In 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), pp. 459–463. https://doi.org/10.1109/dsmp.2018.8478540. DOI: https://doi.org/10.1109/DSMP.2018.8478540
Aunsa-Ard. W.; Kerdcharoen, T. (2022). Electronic Nose for Analysis of Coffee Beans Obtained from Different Altitudes and Origin. In 2022 14th International Conference on Knowledge and Smart Technology (KST), pp. 147–151. https://doi.org/10.1109/kst53302.2022.9729071. DOI: https://doi.org/10.1109/KST53302.2022.9729071
Magfira D.B.; Sarno, R. (2018). Classification of Arabica and Robusta coffee using electronic nose. In 2018 International Conference on Information and Communications Technology (ICOIACT), pp. 645–650. https://doi.org/10.1109/icoiact.2018.8350725. DOI: https://doi.org/10.1109/ICOIACT.2018.8350725
Stedman, Q.; Park, K.K.; Khuri-Yakub, B.T. (2017). An 8-channel CMUT chemical sensor array on a single chip. In 2017 IEEE International Ultrasonics Symposium (IUS), pp. 1–4. https://doi.org/10.1109/ultsym.2017.8092345. DOI: https://doi.org/10.1109/ULTSYM.2017.8092252
Falah, A.H.; Rivai, M.; Purwanto, D. (2019). Implementation of Gas and Sound Sensors on Temperature Control of Coffee Roaster Using Fuzzy Logic Method. In 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 80–85. https://doi.org/10.1109/isitia.2019.8937148. DOI: https://doi.org/10.1109/ISITIA.2019.8937148
Sott, M.K. (2020). Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access, 8, 149854–149867, https://doi.org/10.1109/ACCESS.2020.3016325. DOI: https://doi.org/10.1109/ACCESS.2020.3016325
Pugliese, R.; Regondi, S.; Marini, R. (2021). Machine learning-based approach: global trends, research directions, and regulatory standpoints. Data Science and Management, 4, 19–29, https://doi.org/10.1016/j.dsm.2021.12.002. DOI: https://doi.org/10.1016/j.dsm.2021.12.002
Shetty, D.; Harshavardhan, C.A.; Varma, M.J.; Navi, S.; Ahmed, M.R. (2020). Diving Deep into Deep Learning:History, Evolution, Types and Applications. International Journal of Innovative Technology and Exploring Engineering 9, 2835–2846. https://doi.org/10.35940/ijitee.A4865.019320. DOI: https://doi.org/10.35940/ijitee.A4865.019320
Giua, C.; Materia, V.C.; Camanzi, L. (2022). Smart farming technologies adoption: Which factors play a role in the digital transition?. Technology in Society, 68, 101869. https://doi.org/10.1016/j.techsoc.2022.101869. DOI: https://doi.org/10.1016/j.techsoc.2022.101869
Klerkx, L.; Jakku, E.; Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences, 90–91, 100315. https://doi.org/10.1016/j.njas.2019.100315. DOI: https://doi.org/10.1016/j.njas.2019.100315
van der Burg, S.; Bogaardt, M.J.; Wolfert, S. (2019). Ethics of smart farming: Current questions and directions for responsible innovation towards the future. NJAS - Wageningen Journal of Life Sciences, 90–91, 100289. https://doi.org/10.1016/j.njas.2019.01.001. DOI: https://doi.org/10.1016/j.njas.2019.01.001
Luma-Osmani, S.; Ismaili, F.; Raufi, B.; Zenuni, X. (2020). Causal Reasoning Application in Smart Farming and Ethics: A Systematic Review. Annals of Emerging Technologies in Computing, 4, 10–19. https://doi.org/10.33166/AETiC.2020.04.002. DOI: https://doi.org/10.33166/AETiC.2020.04.002
SUBMITTED: 24 May 2022
ACCEPTED: 06 July 2022
PUBLISHED:
16 August 2022
SUBMITTED to ACCEPTED: 43 days
DOI:
https://doi.org/10.53623/gisa.v2i2.95