Skip to main content

Implementation of the You Look Only Once (YOLOv11) Algorithm to Detect the Ripeness of Golden Melons

Author(s): Lucky Tandoballa , Ery Hartati
Author(s) information:
Faculty of Computer Science and Engineering, Universitas Multi Data Palembang, South Sumatra, Indonesia

Corresponding author

Melon is a horticultural commodity with high economic value, and characteristics such as sweetness, aroma, texture, and phytonutrient content significantly influenced consumer preference. Conventional methods for determining melon ripeness were time-consuming, required considerable expertise, and were often prone to subjective errors, ultimately slowing the production and distribution process. This study aimed to detect the ripeness level of golden melon fruit non-destructively using the YOLOv11 algorithm, focusing on external physical characteristics as the basis for classification. The objectives included applying transfer learning to categorize golden melon into ripe and unripe classes and evaluating model performance using precision, recall, mAP50, mAP50-95, and F1-score. The research methodology consisted of a literature review, dataset collection from previous studies, system design, implementation, and performance testing. The dataset was divided into 70% training, 20% validation, and 10% testing data, and the Adam optimizer was used during the training phase. Based on four experimental scenarios, scenario 3 produced the best and most consistent results, achieving a precision of 90.58%, a recall of 90.79%, an mAP50 of 97.31%, an mAP50-95 of 88.84%, and an F1-score of 92.97%. These findings demonstrated that scenario 3 offered optimal performance for detecting golden melon ripeness. Thus, the model was highly reliable overall.

Saputra, R. A.; Puspitasari, D.; Baidawi, T. (2022). Deteksi Kematangan Buah Melon dengan Algoritma Support Vector Machine Berbasis Ekstraksi Fitur GLCM. Jurnal Infortech, 4(2).

Shahwar, D.; Khan, Z.; Park, Y. (2023). Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon (Cucumis melo L.): A Review. International Journal of Molecular Sciences, 24(20). https://doi.org/10.3390/ijms242015490.

Produksi Tanaman Buah-Buahan 2021. (accessed on 1 October 2025) Avaialable online: https://www.bps.go.id/id/statistics-table/2/NjIjMg==/produksi-tanaman-buah-buahan.html.

Zakiah, R. A.; Wahjuni, S.; Suwarno, W. B. (2023). Pemilihan Algoritma Machine Learning untuk Perangkat dengan Komputasi Terbatas pada Deteksi Kematangan Buah Melon Berjala. Jurnal Ilmu Komputer dan Agri-Informatika, 10(2), 189–199. https://doi.org/10.29244/jika.10.2.189-199.

Abiyyu, I. F.; Tawakal, H. A. (2021). Pengembangan Aplikasi Pendeteksi Kematangan Buah Melon: Studi Kasus Aplikasi Melonku. Jurnal Informasi Terpadu, 7(1), 27–32. https://doi.org/10.54914/jit.v7i1.331.

Pamungkas, W. A.; Bintoro, N. (2021). Karakteristik Kematangan Buah Melon ‘Premier’ (Cucumis melo L.) Berdasarkan Sifat Akustik. Jurnal Agrointek, 15(3), 715–727. https://doi.org/10.21107/agrointek.v15i3.9621.

Budiarti, N. A. E.; Wahjuni, S.; Suwarno, W. B.; Wulandari. (2021). Research on Melon Fruit Selection Based on Rank with YOLOv4 Algorithm. Journal of Physics: Conference Series, 2123(1). https://doi.org/10.1088/1742-6596/2123/1/012036.

Suradiradja, K. H. (2022). Algoritme Machine Learning Multi-Layer Perceptron dan Recurrent Neural Network untuk Prediksi Harga Cabai Merah Besar di Kota Tangerang. Faktum Exacta, 14(4), 194. https://doi.org/10.30998/faktorexacta.v14i4.10376.

Amrozi, Y.; Yuliati, D.; Susilo, A.; Novianto, N.; Ramadhan, R. (2022). Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM. Jurnal Sisfokom (Sistem Informasi dan Komputer), 11(3), 394–399. https://doi.org/10.32736/sisfokom.v11i3.1502.

Umar, U.; Sardjono, T. A.; Kusuma, H.; Yani, M.; Widyantara, H. (2025). Optimizing YOLOv8 for Enhanced Melon Maturity Detection with Attention Mechanisms: A Case Study from Puspalebo Orchard. International Journal of Informatics and Visualization, 9(3), 947–956. https://doi.org/10.62527/joiv.9.3.2942.

Jing, X.; Wang, Y.; Li, D.; Pan, W. (2024). Melon ripeness detection by an improved object detection algorithm for resource constrained environments. Plant Methods, 20(1). https://doi.org/10.1186/s13007-024-01259-3.

Khanam, R.; Hussain, M. (2024). YOLOv11: An Overview of the Key Architectural Enhancements. Arxiv, 1–9. http://arxiv.org/abs/2410.17725.

Lipiński, S.; Sadkowski, S.; Chwietczuk, P. (2025). Application of AI in Date Fruit Detection—Performance Analysis of YOLO and Faster R-CNN Models. Computation, 13, 149. https://doi.org/10.3390/computation13060149.

Alqoria, N. T.; Utaminingrum, F. (2021). Rancang Bangun Sistem Deteksi Kemanisan Buah Melon dengan Metode Gray Level Co-occurrence Matrix (GLCM) dan Support Vector Machine (SVM). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(6), 2472–2477.

Wijaya, V. C.; Utaminingrum, F. (2022). Deteksi Tingkat Kemanisan Buah Melon melalui Ekstraksi Fitur Local Binary Pattern dengan Klasifikasi K-NN berbasis Raspberry Pi 4. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(1), 52–57. http://j-ptiik.ub.ac.id.

Mozaffari, M.H. (2025). Deep Learning for Computer Vision Application. Electronics, 14, 2874. https://doi.org/10.3390/electronics14142874.

Krichen, M. (2023). Convolutional Neural Networks: A Survey. Computers, 12, 151. https://doi.org/10.3390/computers12080151.

Zewen, L.; Fan, L.; Wenjie, Y.; Shouheng, P.; Jun, Z. (2021). A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999–7019.

Hadi, M. U.; Qureshi, R.; Ahmed, A.; Iftikhar, N. (2023). A lightweight CORONA-NET for COVID-19 detection in X-ray images. Expert Systems with Applications, 225. https://doi.org/10.1016/j.eswa.2023.120023.

Firmansah, R. A.; Santoso, H.; Anwar, A. (2023). Transfer Learning Implementation on Image Recognition of Indonesian Traditional Houses. Jurnal Teknik Informatika, 4(6), 1469–1478. https://doi.org/10.52436/1.jutif.2023.4.6.767.

Wening, M.; Hendry, J.; Santoso, W. A. (2025). Traffic Signs Detection System Based on You Only Look Once (YOLOv8) using Raspberry Pi. Jurnal PEKOMMAS, 10(1), 61–70. https://doi.org/10.56873/jpkm.v9i1.5832.

Hidayatullah, P.; Syakrani, N.; Sholahuddin, M. R.; Gelar, T.; Tubagus, R. (2025). YOLOv8 to YOLO11: A Comprehensive Architecture In-depth Comparative Review. Arxiv. http://arxiv.org/abs/2501.13400.

Cheng, W.; Pu, R.; Wang, B. (2025). AMC: Adaptive Learning Rate Adjustment Based on Model Complexity. Mathematics, 13, 650. https://doi.org/10.3390/math13040650.

Mienye, I.D.; Swart, T.G. (2024). A Comprehensive Review of Deep Learning: Architectures, Recent Advances, and Applications. Information, 15, 755. https://doi.org/10.3390/info15120755.

About this article

SUBMITTED: 30 November 2025
ACCEPTED: 23 December 2025
PUBLISHED: 25 December 2025
SUBMITTED to ACCEPTED: 23 days
DOI: https://doi.org/10.53623/gisa.v5i2.934

Cite this article
Tandoballa, L., & Hartati, E. (2025). Implementation of the You Look Only Once (YOLOv11) Algorithm to Detect the Ripeness of Golden Melons. Green Intelligent Systems and Applications, 5(2), 191−204. https://doi.org/10.53623/gisa.v5i2.934
Keywords
Accessed
87
Citations
0
Share this article