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ABSTRACT: Melon is a horticultural commodity with high economic value, and
characteristics such as sweetness, aroma, texture, and phytonutrient content significantly
influenced consumer preference. Conventional methods for determining melon ripeness were
time-consuming, required considerable expertise, and were often prone to subjective errors,
ultimately slowing the production and distribution process. This study aimed to detect the
ripeness level of golden melon fruit non-destructively using the YOLOv11 algorithm, focusing
on external physical characteristics as the basis for classification. The objectives included
applying transfer learning to categorize golden melon into ripe and unripe classes and
evaluating model performance using precision, recall, mAP50, mAP50-95, and F1-score. The
research methodology consisted of a literature review, dataset collection from previous studies,
system design, implementation, and performance testing. The dataset was divided into 70%
training, 20% validation, and 10% testing data, and the Adam optimizer was used during the
training phase. Based on four experimental scenarios, scenario 3 produced the best and most
consistent results, achieving a precision of 90.58%, a recall of 90.79%, an mAP50 of 97.31%,
an mAP50-95 of 88.84%, and an Fl-score of 92.97%. These findings demonstrated that
scenario 3 offered optimal performance for detecting golden melon ripeness. Thus, the model
was highly reliable overall.
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1. Introduction

Melon is one of the agricultural commodities in the form of a horticultural crop with high
economic value [1]. Melon (Cucumis melo L.), watermelon (Citrullus lanatus), cucumber
(Cucumis sativus L.), and pumpkin (Cucurbita) all belong to the Cucurbitaceae plant family,
which consists of approximately 90 genera and 750 species [2]. According to data from the
Central Statistics Agency (BPS), melon production increased by 13.8% in the past three years
compared to total production in 2020 [3]. This increase indicated that melon production in
Indonesia continued to grow annually, making quality control particularly fruit ripeness
sorting, an increasingly important process prior to market distribution.
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Consumers generally preferred melons with high sweetness, affordable prices, crisp
flesh, medium to large fruit sizes, a strong aroma, and long shelf life [4]. One common indicator
of melon ripeness was the thickness and roughness of the skin mesh; a thicker and rougher
mesh typically indicated a ripe fruit [5]. In practice, determining harvest time relied heavily on
visual characteristics such as fruit shape, skin color, size, and sound, as well as physical
parameters like fruit firmness [6]. However, conventional ripeness assessment was time-
consuming, required expert judgment, was prone to subjectivity, and could hinder production
efficiency. Consequently, the development of automated systems capable of accurately and
rapidly detecting fruit ripeness became increasingly important, particularly in the context of
agricultural monitoring using robotic systems [7].

To achieve accurate and consistent results, automation systems in agriculture commonly
utilized machine learning methods to identify ripe and harvestable fruit [8]. Among various
machine learning algorithms, Support Vector Machine (SVM) had been widely used and
demonstrated good performance in solving digital image classification problems [9]. Several
previous studies explored melon ripeness detection using machine learning approaches under
relatively controlled or non-challenging dataset conditions, where images were captured
directly from melon objects. For instance, melon ripeness detection enhanced with attention
mechanisms using the YOLOv8 algorithm achieved a precision of 97.9%, recall of 96.2%,
mAPS50 of 98.1%, and mAP50-95 of 94.1% [10]. Other studies employing SVM combined
with Gray Level Co-Occurrence Matrix (GLCM) feature extraction reported accuracies
ranging from 76.0% to 82.0% [1, 4, 5].

More recently, research began to consider more challenging dataset conditions. A study
in [11] investigated melon ripeness detection under various environmental conditions such as
different viewing angles, target overlap, leaf shading, and variations in fruit size and scale using
an optimized YOLOv8 model with a lightweight MobileNetV3 backbone and Coordinate
Attention mechanism. This approach achieved a precision of 85.9% and an mAP50 of 97.4%.
Although these results demonstrated the robustness of YOLOvS8-based architectures under
challenging conditions, the variability in image capture time, lighting conditions, shadows, and
bright illumination remained a significant challenge for accurate object recognition in real
agricultural environments.

Despite the promising performance of YOLOvVS- and SVM-based methods, existing
studies had not yet explored the potential of newer YOLO architectures on challenging melon
ripeness datasets. In particular, the performance of YOLOvVI11, an advanced version of the
YOLO family, had not been evaluated for golden melon ripeness detection under complex
environmental conditions. This represented a clear research gap, as YOLOvI11 introduced
substantial architectural improvements that might enhance detection stability, accuracy, and
efficiency compared to earlier versions.

YOLOV11, released by Ultralytics in 2025, incorporated a ConvNeXtV3 backbone and
an optimized Dynamic Head, resulting in improved feature representation and more stable
object detection. Compared to YOLOvV8 and YOLOvV10, YOLOv11 reportedly increased mean
Average Precision (mAP) by approximately 3—5% and achieved processing speeds that were
20-25% faster [12]. Previous work applying YOLOvV11 to fruit ripeness classification, such as
mango ripeness detection, achieved an overall accuracy of 97.3%, with precision, recall, and
F1-score all exceeding 97% [13]. These findings suggested that YOLOv11 had strong potential
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for real-time agricultural applications; however, its effectiveness had not yet been validated on
challenging golden melon ripeness datasets.

Therefore, this study aimed to implement and evaluate the YOLOv11 algorithm with the
Adam optimizer for detecting golden melon ripeness based on external physical characteristics
of the fruit. This research specifically focused on challenging dataset conditions, including
variations in camera angles, target overlap, leaf shading, differences in melon size and scale at
various growth stages, and varying image capture times. The central research question guiding
this study was: How did the YOLOv11 algorithm perform in detecting golden melon ripeness
under diverse environmental and imaging conditions, as measured by precision, recall, and
mean Average Precision (mAP)? The findings of this study were expected to contribute to the
development of faster, more accurate, and more efficient automated melon ripeness detection
systems, thereby supporting quality maintenance prior to distribution and sale to consumers.

2. Materials and Methods
2.1.Melon.

Melon (Cucumis melo L.) is a horticultural crop from the Cucurbitaceae family widely
cultivated in tropical regions. It is known for its distinctive aroma, sweet taste, and crunchy
texture, making it a popular fruit among consumers [11]. Melon is characterized by its high
water content (90-95%) and high economic value in the agribusiness sector [14]. Consuming
ripe melon provides higher sugar and nutrient content than unripe melon. Therefore,
determining the ripeness of melon was crucial to maintain its quality and nutritional benefits
[15].

2.2.Computer vision.

Computer vision is a branch of artificial intelligence that enables computers to "see," recognize,
and interpret images or videos in a manner similar to humans. This technology combines digital
image processing with machine learning methods to automatically detect, classify, segment,
and track objects. The development of deep learning has driven significant progress in
computer vision, particularly through the use of Convolutional Neural Network (CNN)
architectures, which help identify and extract complex visual features [16].

2.3.Convolutional Neural Network (CNN).

Convolutional Neural Network (CNN) is a deep learning architecture designed primarily to
solve complex image processing problems [17]. In general, CNNs consist of several main
layers, including convolution layers, non-linear activation functions (ReLU), pooling layers,
and fully connected layers. The convolution layer extracts features from input data using
kernels or filters, while the pooling layer reduces the spatial size of the data, speeding up
computation and preventing overfitting to the training data [19, 20].

2.4.Transfer learning.

Transfer learning is a machine learning approach that leverages the knowledge of a previously
trained model to solve problems on new datasets. Instead of training a model from scratch, this
method adapts and fine-tunes existing model parameters to fit the characteristics of a new
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dataset. Transfer learning improves computational efficiency and reduces training time while
maintaining accuracy and generalizability to new contexts. Knowledge gained from a source
domain or dataset can thus be "transferred" to a target domain with similar characteristics [20].

2.5.YOLOvII.

You Only Look Once (YOLO) is a deep learning architecture designed for real-time object
detection with high computational efficiency, making it suitable for dynamic video processing.
The key feature of YOLO is its one-stage detection method, which allows it to detect and
classify multiple objects simultaneously in a single pass [21]. The YOLOvl1 algorithm
employs a Dynamic Head mechanism to predict bounding box coordinates and class
probabilities more adaptively. This approach improves detection accuracy and speeds up
processing, especially for small objects or objects with varying positions. In YOLOv11, the
input image is divided into an S x S grid. Each grid cell detects an object if the object's center
falls within that cell and predicts several bounding boxes. The confidence score represents the
model's certainty about an object's existence and accuracy, measured by the highest
Intersection Over Union (IoU) value. After detection, results are processed using the Non-
Maximum Suppression (NMS) technique to eliminate redundant predictions, retaining only the
most accurate results. The YOLOvI11 architecture is shown in Figure 1 [22].
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Figure 1. YOLOvV11 architecture.
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YOLOv11 was introduced as the latest version, combining high speed with precise object
detection accuracy due to improvements in its architectural design. This version employed
ConvNeXtV3 as its main backbone, which captured clearer image details, and incorporated the
Dynamic Head feature, allowing it to adapt to various object sizes and conditions. YOLOv11
increased the mean Average Precision (mAP) by 3—5% compared to YOLOv8 and YOLOV10,
while processing data 20-25% faster [12].

2.6.Adam optimizer.

The Adam optimizer is an optimization method that plays a significant role in machine
learning, particularly in the training of neural networks for deep learning applications. The term
Adam stands for Adaptive Moment Estimation, which combines the advantages of two
predecessor algorithms, namely RMSProp and Momentum, to achieve faster and more stable
convergence. Its mechanism relies on calculating two types of estimates: the average and the
uncentered variance of the gradient, which are then used to adjust the learning rate for each
network parameter [23, 24].

2.7.Dataset collection.

The melon dataset used in this study was obtained from a greenhouse at the Shenzhen
Experimental Base of the Chinese Academy of Agricultural Sciences, located on Pengfei Road,
Dapeng New District, Shenzhen, Guangdong Province, China. Images were collected in
October and November 2023. The field data collection process is shown in Figure 2 [11].

Field data collection

Different angles

Different time

Complex field environments

' LARE =

Figure 2. Field data collection process.

This dataset consisted of images taken from various angles to ensure the model could
extract melon features comprehensively. Temporal variability in the images posed a challenge
for the model to recognize target objects amidst shadows and bright light. Although the
greenhouse environment was controlled, providing good growth conditions and adequate plant
spacing, several challenges remained, such as target overlap, leaf shading, and differences in
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size and scale of melons at various growth stages. A total of 3,806 high-quality melon images
with a resolution of 4032x3024 were obtained. This dataset has been used in a research paper
entitled Melon Ripeness Detection by an Improved Object Detection Algorithm for Resource-
Constrained Environments [11], which is accessible at https://github.com/XuebinJing/Melon-
Ripeness-Detection/tree/main?tab=readme-ov-file. From the total of 3,806 images, 3,756
melon images in .jpg format were selected for this study and resized to 640x640 pixels. The
dataset was split into 70% training, 20% validation, and 10% testing, a commonly adopted ratio

in deep learning studies to ensure sufficient training data while maintaining reliable validation
and unbiased testing. Figure 3 shows the ripeness levels of the golden melon.

L

Figure 3. Level of ripeness of the golden melon.
2.8.Design.

Figure 4 shows the model design schematic, which began with the collection of a golden melon
dataset. The images were then processed through a labeling stage to assign each image to the
appropriate ripeness class. After labeling, the dataset was divided into three subsets: training,
validation, and testing. During the training phase, the training dataset underwent image
augmentation techniques, including random rotation, horizontal flipping, brightness
adjustment, and scaling, to increase dataset diversity and improve model generalization. The
augmented data were then used to train the YOLOv11 model. Meanwhile, the validation dataset
was used to monitor the model’s performance throughout training and ensure that overfitting
did not occur. The testing dataset also underwent image augmentation before being used in the
final testing phase, which evaluated the trained model’s overall performance and its ability to
detect melon ripeness accurately. Through this series of processes, the final output was a fully
trained and validated YOLOv11 model ready for automated detection of golden melon
ripeness.
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Figure 4. Model design schematic.
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2.9.Implementation and testing.

In this stage, the previously designed system was implemented using Google Colab as the
working platform. Google Colab was chosen due to its free access to GPU acceleration, ease
of reproducibility, and widespread use in deep learning research. This setup enabled the system
to process and classify the prepared dataset according to the planned learning model. The
implemented system was then tested using the testing dataset to evaluate its performance. The
testing involved various configurations, including 100 and 150 training cycles, a batch size of
16, and learning rates of 0.001 and 0.002. Table 1 presents the different testing configurations
for the combined model.

Table 1. Model testing combination scenario.

Scenario Epoch Batch Size Learning Rate
1 100 16 0.001
2 100 16 0.002
3 150 16 0.001
4 150 16 0.002

After completing the testing process, the results were analyzed to determine the model’s
effectiveness using commonly applied object detection metrics, namely precision, recall, F1-
score, and mean Average Precision (mAP). These metrics were calculated based on the True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values
obtained from the fruit ripeness detection results. The mean Average Precision (mAP) was used
to measure the average precision across all detected object classes, with its calculation
formulated mathematically in Equations (1), (2), (3), and (4). Model performance was
considered successful if it achieved a minimum mAP of over 80%, consistent with previous
studies that reported YOLOVS achieving an average mAP above 80% [10, 11].

Precision = L 1
recision = TP T FP D
Recall = e 2

= TP FN @

Fl—g _ 3 Precision X Recall 3
core = XPrecision+ Recall ()

N
1
maAP = — ZAPi )
i=1

3. Results and Discussion
3.1.Comparison experiments trainning YOLOvI 1 model.

This study conducted four testing scenarios for the YOLOv1l model using the Adam
optimizer. The results of each scenario, which utilized various combinations of training
parameters, are presented below.
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3.1.1 Results for scenario 1 and scenario 2.

In the first scenario, the model was trained using a relatively limited amount of training data
with a moderate learning rate. Based on the performance graph in Figure 5(a), precision and
recall increased rapidly at the beginning of the epochs, indicating that the model began to
recognize objects effectively from the early stages of training. Both mAP50 and mAP50-95
increased gradually until reaching a stable state, demonstrating a fairly good convergence
process. The training and validation loss curves showed a consistent downward trend, although
slight fluctuations occurred due to the limited training data. Overall, scenario 1 showed that a
learning rate of 0.001 provided effective learning, but the model’s performance was still
constrained by the relatively small amount of training data.
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Figure 5. Performance curves of The YOLOv11 model in scenario 1 (a); Performance curves of the YOLOvI11
model in scenario 2 (b).

The second scenario used the same amount of training data as scenario 1 but employed a
higher learning rate. The graph in Figure 5(b) shows that precision and recall increased faster
than in scenario 1, indicating a more aggressive learning process. Both mAP50 and mAP50—
95 reached high values in fewer epochs. However, the graphs also displayed more pronounced
fluctuations, particularly in the validation metrics, suggesting that a high learning rate on
limited data can compromise training stability. This scenario demonstrates that a learning rate
of 0.002 can accelerate convergence but may reduce stability and recall when the training
dataset is still small.

3.1.2. Results for scenario 3 and scenario 4.

In the third scenario, the training dataset was increased to 150 images while maintaining a
learning rate of 0.001. As shown in Figure 6(a), precision and recall increased consistently and
were more stable compared to scenario 1. Both mAP50 and mAP50-95 reached high values
with smoother curves, indicating an improvement in the model’s generalization ability. The
training and validation loss curves decreased steadily, suggesting that the additional training
data helped the model learn more effectively. These results indicate that increasing the amount
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of training data significantly improved the stability and overall performance of the model, even
without changing the learning rate.
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Figure 6. Performance curves of the YOLOv11 model in scenario 3 (a); Performance curves of the YOLOv11
model in scenario 4 (b).

The fourth scenario combined the largest amount of training data with the highest
learning rate. As shown in Figure 6(b), precision, recall, mAP50, and mAP50-95 increased
very rapidly and reached the highest values compared to all other scenarios. The performance
graph appeared to be the most stable, despite the relatively high learning rate, due to the
sufficient amount of training data. The loss curve decreased sharply at the beginning of the
epoch and quickly reached convergence, indicating an efficient training process. This scenario
was concluded to be the optimal configuration in the study, as it achieved the highest accuracy,
fastest convergence, and best stability. Table 2 presents the test results for all four scenarios.

Table 2. Scenario testing results.

Scenario Precision Recall mAP50 mAP50-95 F1-score
1 0.9513 0.8950 0.9748 0.8875 0.9222
2 0.9547 0.8878 0.9758 0.8833 0.9199
3 0.9058 0.9079 0.9731 0.8884 0.9297
4 0.9445 0.8877 0.9743 0.8826 0.9150

Although Scenario 4 produced slightly higher metric values and converged faster due to
a higher learning rate, it was more sensitive to data variations and exhibited less stable training
behavior. This increased the risk of overfitting, especially when the dataset contained complex
visual variations. Scenario 3, on the other hand, demonstrated more stable and balanced
performance, particularly in recall and mAP50-95. The higher recall indicated that the model
detected true objects more effectively, including those affected by occlusion, leaf shading, and
varying lighting conditions. Furthermore, the improved mAP50-95 suggested that Scenario 3
provided more accurate localization across different IoU thresholds, reflecting better
generalization to diverse object sizes and positions.

Across all scenarios, a trade-off between precision and recall was observed. Scenarios
with higher precision tended to miss more objects, whereas Scenario 3 maintained a better
balance between these metrics. This balance was reflected in Scenario 3 achieving the highest
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F1-score, indicating the most optimal compromise between precision and recall and confirming
the overall effectiveness of the model in handling detection accuracy and consistency
simultaneously. Therefore, Scenario 3 was selected as the optimal configuration because it
offered stable training, strong generalization, and robustness to dataset variability, making it
more suitable for real-world agricultural applications.

The YOLOvI11-based model achieved a competitive mAP50 of 97.31% with higher
consistency across scenarios, in contrast to other studies utilizing YOLOvVS for melon ripeness
assessment, which reported mAP50 values ranging from 97.4% to 98.1% [10, 11]. The
increased recall and mAP50-95 in Scenario 3 suggested stronger generalization under
challenging environmental conditions, despite a slightly reduced precision. Differences in
performance between experiments could be attributed to variations in dataset size, image
resolution, and environmental factors.

Compared to other CNN-based architectures commonly used for object detection and
classification, such as Faster R-CNN or SSD, YOLOv11 offered an end-to-end detection
framework that balanced accuracy and computational efficiency. While two-stage detectors
may achieve high precision, they generally required longer training and inference times,
making them less suitable for real-time agricultural applications. In contrast, YOLOv11 was
designed for faster inference with fewer computational resources, enabling efficient
deployment in field conditions. The relatively stable training behavior and consistent
performance observed in this study further supported the suitability of YOLOv11 for datasets
with environmental variability. Additionally, the efficient inference speed and moderate GPU
usage of YOLOVI11 made it practical for real-time monitoring systems, where both detection
accuracy and computational efficiency were critical.

3.2. Confusion matrix.

Figure 7 presents the confusion matrix of the best-performing model obtained from Scenario
3. The confusion matrix provides detailed insight into the classification behavior of the model,
particularly in distinguishing between ripe and unripe fruit classes. Based on the matrix, the
model correctly classified 977 unripe samples and 776 ripe samples, demonstrating strong
capability in recognizing both maturity stages. However, some misclassification patterns were
observed. A total of 24 unripe samples were misclassified as ripe, while 16 ripe samples were
misclassified as unripe. These errors primarily occurred due to visual similarities in color,
texture, and shape between ripe and unripe fruits, especially during transitional maturity stages
where visual boundaries were less distinct. Such overlaps are common in fruit ripeness
detection tasks and highlight the inherent difficulty of differentiating adjacent ripeness levels
based solely on visual cues.

Additionally, several samples from both ripe and unripe classes were predicted as
background, with 114 unripe and 34 ripe samples falling into this category. This suggests that
some fruits were not detected confidently, likely due to partial occlusion, small object size, or
low contrast with the background. Despite this, the number of background-related
misclassifications remained relatively limited compared to the total correct detections,
indicating that the model maintained strong object localization capability. The background
class itself exhibited minimal confusion with fruit classes, as reflected by the low number of
background samples predicted as ripe or unripe. This indicates that the model effectively
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distinguished fruit objects from non-fruit regions, reducing false positives and improving
overall detection reliability.

Confusion Matrix

- 800

Actual
ripe unripe

background

unripe ripe background
Predicted

Figure 7. Best Model Confusion Matrix Results.
3.3. Detection.

Figure 8 further illustrated qualitative detection results under various real-world conditions.
The detection visualizations demonstrated that the model was robust under different lighting
conditions, including uneven illumination and moderate shadows. The model was also able to
correctly detect fruits under partial occlusion, such as overlapping fruits or leaves covering
parts of the object, although minor reductions in confidence were observed in heavily occluded
cases. Additionally, the model performed well in complex background scenarios, where color
similarity between fruit and background elements could have potentially caused misdetections.

5 3 \‘/ - ¢
& 3 » »

(b) (b)

Figure 8. Detection of YOLOv11 in experiment unripe (a); Detection of YOLOv11 in experiment ripe (b).

Overall, the combined analysis of the confusion matrix and detection visualizations
confirmed that Scenario 3 provided the most consistent and balanced performance. The model
achieved high precision and recall with minimal misclassification between ripe and unripe
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classes while maintaining robustness across varying environmental conditions. This balance
between quantitative accuracy and qualitative robustness supported the selection of Scenario 3
as the optimal configuration for fruit maturity detection in this study.

4. Conclusions

This study demonstrated the effectiveness of the YOLOvI1 algorithm for non-destructive
detection of golden melon ripeness under challenging visual conditions, including variations
in lighting, occlusion, and fruit scale. The main contribution of this research was the evaluation
of a newer YOLO architecture on a complex agricultural dataset, addressing the limited prior
exploration of YOLOv11 for melon ripeness detection. Among the evaluated configurations,
Scenario 3 achieved the most balanced and stable performance, attaining a precision of 90.58%,
a recall of 90.79%, an mAP50 of 97.31%, an mAP50-95 of 88.84%, and the highest F1-score
0f 92.97%. These results indicated an optimal trade-off between precision and recall, as well
as strong object localization and generalization capability across varying environmental
conditions. Practically, the proposed YOLOv11-based model was well suited for real-world
agricultural applications, such as automated fruit sorting, harvest monitoring, and smart
farming systems, where reliable and real-time detection is essential. The high recall reduced
the risk of missed detections, while the strong mAP performance confirmed robustness in
handling variations in object size and spatial positioning. However, this study was limited by
the use of a greenhouse-based dataset and binary ripeness classes, as well as the absence of a
detailed computational efficiency analysis. Future work should focus on expanding the dataset
to open-field environments, implementing multi-stage ripeness classification, and enabling
real-time deployment on edge devices to further enhance robustness and practical applicability.
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