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ABSTRACT: Melon is a horticultural commodity with high economic value, and 

characteristics such as sweetness, aroma, texture, and phytonutrient content significantly 

influenced consumer preference. Conventional methods for determining melon ripeness were 

time-consuming, required considerable expertise, and were often prone to subjective errors, 

ultimately slowing the production and distribution process. This study aimed to detect the 

ripeness level of golden melon fruit non-destructively using the YOLOv11 algorithm, focusing 

on external physical characteristics as the basis for classification. The objectives included 

applying transfer learning to categorize golden melon into ripe and unripe classes and 

evaluating model performance using precision, recall, mAP50, mAP50-95, and F1-score. The 

research methodology consisted of a literature review, dataset collection from previous studies, 

system design, implementation, and performance testing. The dataset was divided into 70% 

training, 20% validation, and 10% testing data, and the Adam optimizer was used during the 

training phase. Based on four experimental scenarios, scenario 3 produced the best and most 

consistent results, achieving a precision of 90.58%, a recall of 90.79%, an mAP50 of 97.31%, 

an mAP50-95 of 88.84%, and an F1-score of 92.97%. These findings demonstrated that 

scenario 3 offered optimal performance for detecting golden melon ripeness. Thus, the model 

was highly reliable overall.  
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1. Introduction 

Melon is one of the agricultural commodities in the form of a horticultural crop with high 

economic value [1]. Melon (Cucumis melo L.), watermelon (Citrullus lanatus), cucumber 

(Cucumis sativus L.), and pumpkin (Cucurbita) all belong to the Cucurbitaceae plant family, 

which consists of approximately 90 genera and 750 species [2]. According to data from the 

Central Statistics Agency (BPS), melon production increased by 13.8% in the past three years 

compared to total production in 2020 [3]. This increase indicated that melon production in 

Indonesia continued to grow annually, making quality control particularly fruit ripeness 

sorting, an increasingly important process prior to market distribution. 

https://doi.org/10.53623/gisa.v5i2.934
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Consumers generally preferred melons with high sweetness, affordable prices, crisp 

flesh, medium to large fruit sizes, a strong aroma, and long shelf life [4]. One common indicator 

of melon ripeness was the thickness and roughness of the skin mesh; a thicker and rougher 

mesh typically indicated a ripe fruit [5]. In practice, determining harvest time relied heavily on 

visual characteristics such as fruit shape, skin color, size, and sound, as well as physical 

parameters like fruit firmness [6]. However, conventional ripeness assessment was time-

consuming, required expert judgment, was prone to subjectivity, and could hinder production 

efficiency. Consequently, the development of automated systems capable of accurately and 

rapidly detecting fruit ripeness became increasingly important, particularly in the context of 

agricultural monitoring using robotic systems [7]. 

To achieve accurate and consistent results, automation systems in agriculture commonly 

utilized machine learning methods to identify ripe and harvestable fruit [8]. Among various 

machine learning algorithms, Support Vector Machine (SVM) had been widely used and 

demonstrated good performance in solving digital image classification problems [9]. Several 

previous studies explored melon ripeness detection using machine learning approaches under 

relatively controlled or non-challenging dataset conditions, where images were captured 

directly from melon objects. For instance, melon ripeness detection enhanced with attention 

mechanisms using the YOLOv8 algorithm achieved a precision of 97.9%, recall of 96.2%, 

mAP50 of 98.1%, and mAP50–95 of 94.1% [10]. Other studies employing SVM combined 

with Gray Level Co-Occurrence Matrix (GLCM) feature extraction reported accuracies 

ranging from 76.0% to 82.0% [1, 4, 5]. 

More recently, research began to consider more challenging dataset conditions. A study 

in [11] investigated melon ripeness detection under various environmental conditions such as 

different viewing angles, target overlap, leaf shading, and variations in fruit size and scale using 

an optimized YOLOv8 model with a lightweight MobileNetV3 backbone and Coordinate 

Attention mechanism. This approach achieved a precision of 85.9% and an mAP50 of 97.4%. 

Although these results demonstrated the robustness of YOLOv8-based architectures under 

challenging conditions, the variability in image capture time, lighting conditions, shadows, and 

bright illumination remained a significant challenge for accurate object recognition in real 

agricultural environments. 

Despite the promising performance of YOLOv8- and SVM-based methods, existing 

studies had not yet explored the potential of newer YOLO architectures on challenging melon 

ripeness datasets. In particular, the performance of YOLOv11, an advanced version of the 

YOLO family, had not been evaluated for golden melon ripeness detection under complex 

environmental conditions. This represented a clear research gap, as YOLOv11 introduced 

substantial architectural improvements that might enhance detection stability, accuracy, and 

efficiency compared to earlier versions. 

YOLOv11, released by Ultralytics in 2025, incorporated a ConvNeXtV3 backbone and 

an optimized Dynamic Head, resulting in improved feature representation and more stable 

object detection. Compared to YOLOv8 and YOLOv10, YOLOv11 reportedly increased mean 

Average Precision (mAP) by approximately 3–5% and achieved processing speeds that were 

20–25% faster [12]. Previous work applying YOLOv11 to fruit ripeness classification, such as 

mango ripeness detection, achieved an overall accuracy of 97.3%, with precision, recall, and 

F1-score all exceeding 97% [13]. These findings suggested that YOLOv11 had strong potential 
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for real-time agricultural applications; however, its effectiveness had not yet been validated on 

challenging golden melon ripeness datasets. 

Therefore, this study aimed to implement and evaluate the YOLOv11 algorithm with the 

Adam optimizer for detecting golden melon ripeness based on external physical characteristics 

of the fruit. This research specifically focused on challenging dataset conditions, including 

variations in camera angles, target overlap, leaf shading, differences in melon size and scale at 

various growth stages, and varying image capture times. The central research question guiding 

this study was: How did the YOLOv11 algorithm perform in detecting golden melon ripeness 

under diverse environmental and imaging conditions, as measured by precision, recall, and 

mean Average Precision (mAP)? The findings of this study were expected to contribute to the 

development of faster, more accurate, and more efficient automated melon ripeness detection 

systems, thereby supporting quality maintenance prior to distribution and sale to consumers. 

2. Materials and Methods 

2.1.Melon. 

Melon (Cucumis melo L.) is a horticultural crop from the Cucurbitaceae family widely 

cultivated in tropical regions. It is known for its distinctive aroma, sweet taste, and crunchy 

texture, making it a popular fruit among consumers [11]. Melon is characterized by its high 

water content (90–95%) and high economic value in the agribusiness sector [14]. Consuming 

ripe melon provides higher sugar and nutrient content than unripe melon. Therefore, 

determining the ripeness of melon was crucial to maintain its quality and nutritional benefits 

[15]. 

2.2.Computer vision. 

Computer vision is a branch of artificial intelligence that enables computers to "see," recognize, 

and interpret images or videos in a manner similar to humans. This technology combines digital 

image processing with machine learning methods to automatically detect, classify, segment, 

and track objects. The development of deep learning has driven significant progress in 

computer vision, particularly through the use of Convolutional Neural Network (CNN) 

architectures, which help identify and extract complex visual features [16]. 

2.3.Convolutional Neural Network (CNN). 

Convolutional Neural Network (CNN) is a deep learning architecture designed primarily to 

solve complex image processing problems [17]. In general, CNNs consist of several main 

layers, including convolution layers, non-linear activation functions (ReLU), pooling layers, 

and fully connected layers. The convolution layer extracts features from input data using 

kernels or filters, while the pooling layer reduces the spatial size of the data, speeding up 

computation and preventing overfitting to the training data [19, 20]. 

2.4.Transfer learning. 

Transfer learning is a machine learning approach that leverages the knowledge of a previously 

trained model to solve problems on new datasets. Instead of training a model from scratch, this 

method adapts and fine-tunes existing model parameters to fit the characteristics of a new 
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dataset. Transfer learning improves computational efficiency and reduces training time while 

maintaining accuracy and generalizability to new contexts. Knowledge gained from a source 

domain or dataset can thus be "transferred" to a target domain with similar characteristics [20]. 

2.5.YOLOv11. 

You Only Look Once (YOLO) is a deep learning architecture designed for real-time object 

detection with high computational efficiency, making it suitable for dynamic video processing. 

The key feature of YOLO is its one-stage detection method, which allows it to detect and 

classify multiple objects simultaneously in a single pass [21]. The YOLOv11 algorithm 

employs a Dynamic Head mechanism to predict bounding box coordinates and class 

probabilities more adaptively. This approach improves detection accuracy and speeds up 

processing, especially for small objects or objects with varying positions. In YOLOv11, the 

input image is divided into an S × S grid. Each grid cell detects an object if the object's center 

falls within that cell and predicts several bounding boxes. The confidence score represents the 

model's certainty about an object's existence and accuracy, measured by the highest 

Intersection Over Union (IoU) value. After detection, results are processed using the Non-

Maximum Suppression (NMS) technique to eliminate redundant predictions, retaining only the 

most accurate results. The YOLOv11 architecture is shown in Figure 1 [22]. 

 
Figure 1. YOLOv11 architecture. 
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YOLOv11 was introduced as the latest version, combining high speed with precise object 

detection accuracy due to improvements in its architectural design. This version employed 

ConvNeXtV3 as its main backbone, which captured clearer image details, and incorporated the 

Dynamic Head feature, allowing it to adapt to various object sizes and conditions. YOLOv11 

increased the mean Average Precision (mAP) by 3–5% compared to YOLOv8 and YOLOv10, 

while processing data 20–25% faster [12]. 

2.6.Adam optimizer. 

The Adam optimizer is an optimization method that plays a significant role in machine 

learning, particularly in the training of neural networks for deep learning applications. The term 

Adam stands for Adaptive Moment Estimation, which combines the advantages of two 

predecessor algorithms, namely RMSProp and Momentum, to achieve faster and more stable 

convergence. Its mechanism relies on calculating two types of estimates: the average and the 

uncentered variance of the gradient, which are then used to adjust the learning rate for each 

network parameter [23, 24]. 

2.7.Dataset collection. 

The melon dataset used in this study was obtained from a greenhouse at the Shenzhen 

Experimental Base of the Chinese Academy of Agricultural Sciences, located on Pengfei Road, 

Dapeng New District, Shenzhen, Guangdong Province, China. Images were collected in 

October and November 2023. The field data collection process is shown in Figure 2 [11]. 

 
Figure 2. Field data collection process. 

This dataset consisted of images taken from various angles to ensure the model could 

extract melon features comprehensively. Temporal variability in the images posed a challenge 

for the model to recognize target objects amidst shadows and bright light. Although the 

greenhouse environment was controlled, providing good growth conditions and adequate plant 

spacing, several challenges remained, such as target overlap, leaf shading, and differences in 
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size and scale of melons at various growth stages. A total of 3,806 high-quality melon images 

with a resolution of 4032×3024 were obtained. This dataset has been used in a research paper 

entitled Melon Ripeness Detection by an Improved Object Detection Algorithm for Resource-

Constrained Environments [11], which is accessible at https://github.com/XuebinJing/Melon-

Ripeness-Detection/tree/main?tab=readme-ov-file. From the total of 3,806 images, 3,756 

melon images in .jpg format were selected for this study and resized to 640×640 pixels. The 

dataset was split into 70% training, 20% validation, and 10% testing, a commonly adopted ratio 

in deep learning studies to ensure sufficient training data while maintaining reliable validation 

and unbiased testing. Figure 3 shows the ripeness levels of the golden melon. 

 
Figure 3. Level of ripeness of the golden melon. 

2.8.Design. 

Figure 4 shows the model design schematic, which began with the collection of a golden melon 

dataset. The images were then processed through a labeling stage to assign each image to the 

appropriate ripeness class. After labeling, the dataset was divided into three subsets: training, 

validation, and testing. During the training phase, the training dataset underwent image 

augmentation techniques, including random rotation, horizontal flipping, brightness 

adjustment, and scaling, to increase dataset diversity and improve model generalization. The 

augmented data were then used to train the YOLOv11 model. Meanwhile, the validation dataset 

was used to monitor the model’s performance throughout training and ensure that overfitting 

did not occur. The testing dataset also underwent image augmentation before being used in the 

final testing phase, which evaluated the trained model’s overall performance and its ability to 

detect melon ripeness accurately. Through this series of processes, the final output was a fully 

trained and validated YOLOv11 model ready for automated detection of golden melon 

ripeness. 

 
Figure 4. Model design schematic. 

https://github.com/XuebinJing/Melon-Ripeness-Detection/tree/main?tab=readme-ov-file
https://github.com/XuebinJing/Melon-Ripeness-Detection/tree/main?tab=readme-ov-file
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2.9.Implementation and testing. 

In this stage, the previously designed system was implemented using Google Colab as the 

working platform. Google Colab was chosen due to its free access to GPU acceleration, ease 

of reproducibility, and widespread use in deep learning research. This setup enabled the system 

to process and classify the prepared dataset according to the planned learning model. The 

implemented system was then tested using the testing dataset to evaluate its performance. The 

testing involved various configurations, including 100 and 150 training cycles, a batch size of 

16, and learning rates of 0.001 and 0.002. Table 1 presents the different testing configurations 

for the combined model.  

Table 1. Model testing combination scenario. 

Scenario Epoch Batch Size Learning Rate 

1 100 16 0.001 

2 100 16 0.002 

3 150 16 0.001 

4 150 16 0.002 

 

After completing the testing process, the results were analyzed to determine the model’s 

effectiveness using commonly applied object detection metrics, namely precision, recall, F1-

score, and mean Average Precision (mAP). These metrics were calculated based on the True 

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values 

obtained from the fruit ripeness detection results. The mean Average Precision (mAP) was used 

to measure the average precision across all detected object classes, with its calculation 

formulated mathematically in Equations (1), (2), (3), and (4). Model performance was 

considered successful if it achieved a minimum mAP of over 80%, consistent with previous 

studies that reported YOLOv8 achieving an average mAP above 80% [10, 11]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                        (2) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 x
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 x 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
   (3) 

𝑚𝐴𝑃 =  
1

𝑁
 ∑ 𝐴𝑃𝑖

𝑁

𝑖=1

                                          (4) 

3. Results and Discussion 

3.1.Comparison experiments trainning YOLOv11 model. 

This study conducted four testing scenarios for the YOLOv11 model using the Adam 

optimizer. The results of each scenario, which utilized various combinations of training 

parameters, are presented below. 
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3.1.1 Results for scenario 1 and scenario 2. 

In the first scenario, the model was trained using a relatively limited amount of training data 

with a moderate learning rate. Based on the performance graph in Figure 5(a), precision and 

recall increased rapidly at the beginning of the epochs, indicating that the model began to 

recognize objects effectively from the early stages of training. Both mAP50 and mAP50–95 

increased gradually until reaching a stable state, demonstrating a fairly good convergence 

process. The training and validation loss curves showed a consistent downward trend, although 

slight fluctuations occurred due to the limited training data. Overall, scenario 1 showed that a 

learning rate of 0.001 provided effective learning, but the model’s performance was still 

constrained by the relatively small amount of training data. 

           
(a)        (b) 

Figure 5. Performance curves of The YOLOv11 model in scenario 1 (a); Performance curves of the YOLOv11 

model in scenario 2 (b). 

The second scenario used the same amount of training data as scenario 1 but employed a 

higher learning rate. The graph in Figure 5(b) shows that precision and recall increased faster 

than in scenario 1, indicating a more aggressive learning process. Both mAP50 and mAP50–

95 reached high values in fewer epochs. However, the graphs also displayed more pronounced 

fluctuations, particularly in the validation metrics, suggesting that a high learning rate on 

limited data can compromise training stability. This scenario demonstrates that a learning rate 

of 0.002 can accelerate convergence but may reduce stability and recall when the training 

dataset is still small. 

3.1.2. Results for scenario 3 and scenario 4. 

In the third scenario, the training dataset was increased to 150 images while maintaining a 

learning rate of 0.001. As shown in Figure 6(a), precision and recall increased consistently and 

were more stable compared to scenario 1. Both mAP50 and mAP50–95 reached high values 

with smoother curves, indicating an improvement in the model’s generalization ability. The 

training and validation loss curves decreased steadily, suggesting that the additional training 

data helped the model learn more effectively. These results indicate that increasing the amount 
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of training data significantly improved the stability and overall performance of the model, even 

without changing the learning rate. 

           
(a)         (b) 

Figure 6. Performance curves of the YOLOv11 model in scenario 3 (a); Performance curves of the YOLOv11 

model in scenario 4 (b). 

The fourth scenario combined the largest amount of training data with the highest 

learning rate. As shown in Figure 6(b), precision, recall, mAP50, and mAP50–95 increased 

very rapidly and reached the highest values compared to all other scenarios. The performance 

graph appeared to be the most stable, despite the relatively high learning rate, due to the 

sufficient amount of training data. The loss curve decreased sharply at the beginning of the 

epoch and quickly reached convergence, indicating an efficient training process. This scenario 

was concluded to be the optimal configuration in the study, as it achieved the highest accuracy, 

fastest convergence, and best stability. Table 2 presents the test results for all four scenarios. 

Table 2. Scenario testing results. 

Scenario Precision Recall mAP50 mAP50-95 F1-score 

1 0.9513 0.8950 0.9748 0.8875 0.9222 

2 0.9547 0.8878 0.9758 0.8833 0.9199 

3 0.9058 0.9079 0.9731 0.8884 0.9297 

4 0.9445 0.8877 0.9743 0.8826 0.9150 

Although Scenario 4 produced slightly higher metric values and converged faster due to 

a higher learning rate, it was more sensitive to data variations and exhibited less stable training 

behavior. This increased the risk of overfitting, especially when the dataset contained complex 

visual variations. Scenario 3, on the other hand, demonstrated more stable and balanced 

performance, particularly in recall and mAP50–95. The higher recall indicated that the model 

detected true objects more effectively, including those affected by occlusion, leaf shading, and 

varying lighting conditions. Furthermore, the improved mAP50–95 suggested that Scenario 3 

provided more accurate localization across different IoU thresholds, reflecting better 

generalization to diverse object sizes and positions. 

Across all scenarios, a trade-off between precision and recall was observed. Scenarios 

with higher precision tended to miss more objects, whereas Scenario 3 maintained a better 

balance between these metrics. This balance was reflected in Scenario 3 achieving the highest 
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F1-score, indicating the most optimal compromise between precision and recall and confirming 

the overall effectiveness of the model in handling detection accuracy and consistency 

simultaneously. Therefore, Scenario 3 was selected as the optimal configuration because it 

offered stable training, strong generalization, and robustness to dataset variability, making it 

more suitable for real-world agricultural applications. 

The YOLOv11-based model achieved a competitive mAP50 of 97.31% with higher 

consistency across scenarios, in contrast to other studies utilizing YOLOv8 for melon ripeness 

assessment, which reported mAP50 values ranging from 97.4% to 98.1% [10, 11]. The 

increased recall and mAP50–95 in Scenario 3 suggested stronger generalization under 

challenging environmental conditions, despite a slightly reduced precision. Differences in 

performance between experiments could be attributed to variations in dataset size, image 

resolution, and environmental factors. 

Compared to other CNN-based architectures commonly used for object detection and 

classification, such as Faster R-CNN or SSD, YOLOv11 offered an end-to-end detection 

framework that balanced accuracy and computational efficiency. While two-stage detectors 

may achieve high precision, they generally required longer training and inference times, 

making them less suitable for real-time agricultural applications. In contrast, YOLOv11 was 

designed for faster inference with fewer computational resources, enabling efficient 

deployment in field conditions. The relatively stable training behavior and consistent 

performance observed in this study further supported the suitability of YOLOv11 for datasets 

with environmental variability. Additionally, the efficient inference speed and moderate GPU 

usage of YOLOv11 made it practical for real-time monitoring systems, where both detection 

accuracy and computational efficiency were critical. 

3.2. Confusion matrix. 

Figure 7 presents the confusion matrix of the best-performing model obtained from Scenario 

3. The confusion matrix provides detailed insight into the classification behavior of the model, 

particularly in distinguishing between ripe and unripe fruit classes. Based on the matrix, the 

model correctly classified 977 unripe samples and 776 ripe samples, demonstrating strong 

capability in recognizing both maturity stages. However, some misclassification patterns were 

observed. A total of 24 unripe samples were misclassified as ripe, while 16 ripe samples were 

misclassified as unripe. These errors primarily occurred due to visual similarities in color, 

texture, and shape between ripe and unripe fruits, especially during transitional maturity stages 

where visual boundaries were less distinct. Such overlaps are common in fruit ripeness 

detection tasks and highlight the inherent difficulty of differentiating adjacent ripeness levels 

based solely on visual cues.  

Additionally, several samples from both ripe and unripe classes were predicted as 

background, with 114 unripe and 34 ripe samples falling into this category. This suggests that 

some fruits were not detected confidently, likely due to partial occlusion, small object size, or 

low contrast with the background. Despite this, the number of background-related 

misclassifications remained relatively limited compared to the total correct detections, 

indicating that the model maintained strong object localization capability. The background 

class itself exhibited minimal confusion with fruit classes, as reflected by the low number of 

background samples predicted as ripe or unripe. This indicates that the model effectively 



Green Intelligent Systems and Applications 5(2), 2025, 191−204 

201 
 

distinguished fruit objects from non-fruit regions, reducing false positives and improving 

overall detection reliability. 

 
Figure 7. Best Model Confusion Matrix Results. 

3.3. Detection. 

Figure 8 further illustrated qualitative detection results under various real-world conditions. 

The detection visualizations demonstrated that the model was robust under different lighting 

conditions, including uneven illumination and moderate shadows. The model was also able to 

correctly detect fruits under partial occlusion, such as overlapping fruits or leaves covering 

parts of the object, although minor reductions in confidence were observed in heavily occluded 

cases. Additionally, the model performed well in complex background scenarios, where color 

similarity between fruit and background elements could have potentially caused misdetections. 

    
(b)             (b) 

Figure 8. Detection of YOLOv11 in experiment unripe (a); Detection of YOLOv11 in experiment ripe (b). 

Overall, the combined analysis of the confusion matrix and detection visualizations 

confirmed that Scenario 3 provided the most consistent and balanced performance. The model 

achieved high precision and recall with minimal misclassification between ripe and unripe 
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classes while maintaining robustness across varying environmental conditions. This balance 

between quantitative accuracy and qualitative robustness supported the selection of Scenario 3 

as the optimal configuration for fruit maturity detection in this study. 

4. Conclusions 

This study demonstrated the effectiveness of the YOLOv11 algorithm for non-destructive 

detection of golden melon ripeness under challenging visual conditions, including variations 

in lighting, occlusion, and fruit scale. The main contribution of this research was the evaluation 

of a newer YOLO architecture on a complex agricultural dataset, addressing the limited prior 

exploration of YOLOv11 for melon ripeness detection. Among the evaluated configurations, 

Scenario 3 achieved the most balanced and stable performance, attaining a precision of 90.58%, 

a recall of 90.79%, an mAP50 of 97.31%, an mAP50–95 of 88.84%, and the highest F1-score 

of 92.97%. These results indicated an optimal trade-off between precision and recall, as well 

as strong object localization and generalization capability across varying environmental 

conditions. Practically, the proposed YOLOv11-based model was well suited for real-world 

agricultural applications, such as automated fruit sorting, harvest monitoring, and smart 

farming systems, where reliable and real-time detection is essential. The high recall reduced 

the risk of missed detections, while the strong mAP performance confirmed robustness in 

handling variations in object size and spatial positioning. However, this study was limited by 

the use of a greenhouse-based dataset and binary ripeness classes, as well as the absence of a 

detailed computational efficiency analysis. Future work should focus on expanding the dataset 

to open-field environments, implementing multi-stage ripeness classification, and enabling 

real-time deployment on edge devices to further enhance robustness and practical applicability. 
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