Skip to main content

Twitter Sentiment Analysis of Mental Health Issues Post COVID-19

Author(s): Panca Dewi Pamungkasari 1 ORCID https://orcid.org/0000-0001-6471-2398 , Sari Ningsih 1 , Achmad Pratama Rifai 2 ORCID https://orcid.org/0000-0003-4890-8344 , Alisyafira Sayyidina Nandila 1 , Huu Tho Nguyen 3 ORCID https://orcid.org/0000-0001-8558-5906 , Sathish Kumar Penchala 4 ORCID https://orcid.org/0000-0002-1129-6789
Author(s) information:
1 Faculty of Communication and Information Technology Universitas Nasional, Jakarta, Indonesia
2 Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
3 Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
4 Indore Institute of Science and Technology, Indore, India

Corresponding author

The Coronavirus Disease 2019 (COVID-19) impacted many aspects of daily life, including mental health, as some individuals struggled to adjust to the rapid changes brought on by the pandemic. This paper investigated sentiment analysis of Twitter data following the COVID-19 pandemic. Specifically, we analyzed a large corpus of tweets to understand public sentiment and its implications for mental health in the post-pandemic context. The Naïve Bayes and Support Vector Machine (SVM) classifiers were used to categorize tweets into positive, negative, and neutral sentiments. The collected tweet data samples showed that 38.35% were neutral, 32.56% were positive, and 29.09% were negative. Results using the SVM method showed an accuracy of 84%, while Naïve Bayes achieved 80% accuracy.

Birmingham, W.C.; Wadsworth, L.L.; Lassetter, J.H.; Graff, T.C.; Lauren, E.; Hung, M. (2023). Covid-19 lockdown: Impact on college students’ lives. Journal of American College Health, 71(3), 879–893. https://doi.org/10.1080/07448481.2021.1909041.

Mastrorosa, I.; Del Duca, G.; Pinnetti, C.; Lorenzini, P.; Vergori, A.; Brita, A.C.; Camici, M.; Mazzotta, V.; Baldini, F.; Chinello, P.; Mencarini, P.; Giancola, M.L.; Abdeddaim, A.; Girardi, E.; Vaia, F.; Antinori, A. (2023). What is the impact of post-covid-19 syndrome on health-related quality of life and associated factors: a cross-sectional analysis. Health and Quality of Life Outcomes, 21(1), 28. https://doi.org/10.1186/s12955-023-02107-z.

Fusar-Poli, P.; Salazar de Pablo, G.; De Micheli, A.; Nieman, D.H.; Correll, C.U.; Kessing, L.V.; Pfennig, A.; Bechdolf, A.; Borgwardt, S.; Arango, C.; van Amelsvoort, T. (2020). What is good mental health? a scoping review. European Neuropsychopharmacology, 31, 33–46. https://doi.org/10.1016/j.euroneuro.2019.12.105.

Cullen, W.; Gulati, G.; Kelly, B.D. (2020). Mental health in the COVID-19 pandemic. QJM: An International Journal of Medicine, 113(5), 311–312. https://doi.org/10.1093/qjmed/hcaa110.

Henderson, C.; Evans-Lacko, S.; Thornicroft, G. (2013). Mental illness stigma, help seeking, and public health programs. American Journal of Public Health, 103, 777–780. https://doi.org/10.2105/ajph.2012.301056.

Jansli, S.M.; Hudson, G.; Negbenose, E.; Erturk, S.; Wykes, T.; Jilka, S. (2022). Investigating mental health service user views of stigma on twitter during covid-19: a mixed-methods study. Journal of Mental Health, 31(4), 576–584. https://doi.org/10.1080/09638237.2022.2091763.

Benrouba, F.; Boudour, R. (2023). Emotional sentiment analysis of social media content for mental health safety. Social Network Analysis and Mining, 13(1), 17. http://doi.org/10.21203/rs.3.rs-2170906/v1.

Colella, S.; Dufourt, F.; Hildebrand, V.A.; Vivès, R. (2023). Mental health effects of covid-19 lockdowns: A twitter-based analysis. Economics & Human Biology, 51, 101307. https://doi.org/10.1016/j.ehb.2023.101307.

Beierle, F.; Pryss, R.; Aizawa, A. (2023). Sentiments about mental health on twitter—before and during the covid-19 pandemic. Healthcare, 11(21), 2893. https://doi.org/10.3390/healthcare11212893.

Hazarika, D.; Konwar, G.; Deb, S.; Bora, D.J. (2020). Sentiment analysis on twitter by using textblob for natural language processing. The International Conference on Research in Management & Technovation, 63–67. http://doi.org/10.15439/2020KM20.

Fitri, F.; Nasrun, M.; Setianingsih, C. (2018). Sentiment analysis on the level of customer satisfaction to data cellular services using the naive bayes classifier algorithm. IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), 201–206. http://doi.org/10.1109/IOTAIS.2018.8600870.

Testas, A. (2023). Naive Bayes Classification with Pandas, Scikit-Learn, and PySpark; Apress: Berkeley, USA, 281–297. https://doi.org/10.1007/978-1-4842-9751-3_11.

Seref, B.; Bostanci, G.E. (2018). Sentiment analysis using naive bayes and complement naive bayes classifier algorithms on hadoop framework. International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). http://doi.org/10.1109/ISMSIT.2018.8567243.

Taheri, S.; Mammadov, M. (2013). Learning the naive bayes classifier with optimization models. International Journal of Applied Mathematics and Computer Science, 23(4), 787–795. http://doi.org/10.2478/amcs-2013-0059.

Montesinos López, O.A.; Montesinos López, A.; Crossa, J. (2022). Support Vector Machines and Support Vector Regression; Springer: Cham, Switzerland. pp. 337–378. http://doi.org/10.1007/978-3-030-89010-0_9.

About this article

SUBMITTED: 16 January 2025
ACCEPTED: 24 March 2025
PUBLISHED: 29 March 2025
SUBMITTED to ACCEPTED: 67 days
DOI: https://doi.org/10.53623/gisa.v5i1.588

Cite this article
Pamungkasari, P. D. ., Ningsih, S. ., Rifai, A. P., Nandila, A. S. ., Nguyen, H. T., & Penchala, S. K. . (2025). Twitter Sentiment Analysis of Mental Health Issues Post COVID-19. Green Intelligent Systems and Applications, 5(1), 51–60. https://doi.org/10.53623/gisa.v5i1.588
Keywords
Accessed
177
Citations
0
Share this article