Skip to main content

Artificial Neural Network for Benchmarking the Dimensional Accuracy of the PLA Fused Flament Fabrication Process

Author(s): Kevin Stephen Setiawan 1 , Irvantara Pradmaputra Tanaji 1 , Ari Permana 1 , Hafizh Naufaly Akbar 1 , Dhonadio Aurell Azhar Prihatmaja 1 , Nur Mayke Eka Normasari 1 , Achmad Pratama Rifai 1 , Panca Dewi Pamungkasari 2
Author(s) information:
1 Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
2 Faculty of Computer Information Technology, Universitas Nasional, Jakarta, Indonesia

Corresponding author

Fused Deposition Modeling (FDM) is an additive manufacturing technique that uses a 3D printer to extrude molten filament through a nozzle, which moves along the X, Y, and Z axes to create parts with the desired geometry. FDM offers numerous advantages, especially for producing parts with complex shapes, due to its ability to enable rapid and cost-effective manufacturing compared to traditional methods. This study implemented an Artificial Neural Network (ANN) to optimize process parameters aimed at minimizing dimensional inaccuracies in the FDM process. Key parameters considered for optimization included the number of shells, infill percentage, and nozzle temperature. The ANN utilized three algorithms: Scaled Conjugate Gradient, Bayesian Regularization, and Levenberg-Marquardt. Model performance was evaluated based on dimensional deviations along the X and Y axes, with a hidden layer of 25 neurons. Among the algorithms, Scaled Conjugate Gradient provided the most accurate results in minimizing dimensional errors.

Montez, M.; Willis, K.; Rendler, H.; Marshall, C.; Rubio, E.; Rajak, D. K.; Rahmad, M. H.; Menezes, P. L. (2022). Fused deposition modeling (FDM): processes, material properties, and applications. Tribology of Additively Manufactured Materials, 137‒63. https://doi.org/10.1016/B978-0-12-821328-5.00005-6.

Equbal, A.; Sood, A. K.; Mahapatra, S. S. (2011). Prediction of dimensional accuracy in fused deposition modelling: a fuzzy logic approach. International Journal of Productivity and Quality Management, 7, 22‒43. https://doi.org/10.1504/IJPQM.2011.03773.

Rajan, K.; Samykano, M.; Kadirgama, K.; Harun, W. S. W.; Rahman, M. M. (2022). Fused deposition modeling: process, materials, parameters, properties, and applications. The International Journal of Advanced Manufacturing Technology, 120, 1531‒1570. https://doi.org/10.1007/s00170-022-08860-7.

Aslani, K.; Kitsakis, K.; Kechagias, J.; Vaxevanidis, N.; Manolakos, D. (2020). On the application of grey Taguchi method for benchmarking the dimensional accuracy of the PLA fused filament fabrication process. SN Applied Sciences, 2. https://doi.org/10.1007/s42452-020-2823-z.

Mohamed, O.; Masood, S.; Bhowmik, J. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 3, 42‒53. https://doi.org/10.1007/s40436-014-0097-7.

Beniak, J.; Križan, P.; Šooš, Ľ.; Matúš, M. (2019). Research on shape and dimensional accuracy of FDM produced parts. IOP Conference Series: Materials Science and Engineering, 501, 012030. https://doi.org/10.1088/1757-899X/501/1/012030.

Dey, A.; Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, 3, 64. https://doi.org/10.3390/jmmp3030064.

Turner, B.; Gold, S. (2015). A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21, 250‒261. https://doi.org/10.1108/rpj-02-2013-0017.

Valerga, A.; Batista, M.; Salguero, J.; Girot, F. (2018). Influence of PLA filament conditions on characteristics of FDM parts. Materials, 11, 1322. https://doi.org/10.3390/ma11081322.

Moza, Z.; Kitsakis, K.; Kechagias, J.; Mastorakis, N. (2015). Optimizing dimensional accuracy of fused filament fabrication using Taguchi design. Proceedings of the 14th International Conference on Instrumentation, Measurement, Circuits and Systems, 27‒29. https://api.semanticscholar.org/CorpusID:221669446.

Sudin, M. N.; Shamsudin, S. A.; Abdullah, M. A. (2016). Effect of part features on dimensional accuracy of FDM model. ARPN Journal of Engineering and Applied Sciences, 11, 8067‒8072.

Alafaghani, A.; Qattawi, A.; Alrawi, B.; Guzman, A. (2017). Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Procedia Manufacturing, 10, 791‒803. https://doi.org/10.1016/j.promfg.2017.07.079.

Mahmood, S.; Qureshi, A.; Talamona, D. (2018). Taguchi based process optimization for dimension and tolerance control for fused deposition modelling. Additive Manufacturing, 21, 183‒190. https://doi.org/10.1016/j.addma.2018.03.009.

Minetola, P.; Galati, M. (2018). A challenge for enhancing the dimensional accuracy of a low-cost 3D printer by means of self-replicated parts. Additive Manufacturing, 22, 256‒264. https://doi.org/10.1016/j.addma.2018.05.028.

Vishwas, M.; Basavaraj, C. K.; Vinyas, M. (2018). Experimental investigation using Taguchi method to optimize process parameters of fused deposition modeling for ABS and nylon materials. Materials Today: Proceedings, 5, 7106–7114. https://doi.org/10.1016/j.matpr.2017.11.375.21.

Sharma, P.; Vaid, H.; Vajpeyi, R.; Shubham, P.; Agarwal, K. M.; Bhatia, D. (2022). Predicting the dimensional variation of geometries produced through FDM 3D printing employing supervised machine learning. Sensors International, 3, 100194. https://doi.org/10.1016/j.sintl.2022.100194.

Mohamed, O. A.; Masood, S. H.; Bhowmik, J. L. (2021). Modeling, analysis, and optimization of dimensional accuracy of FDM-fabricated parts using definitive screening design and deep learning feedforward artificial neural network. Advances in Manufacturing, 9, 115‒129. https://doi.org/10.1007/s40436-020-00336-9.

Charalampous, P.; Kostavelis, I.; Kontodina, T.; Tzovaras, D. (2021). Learning-based error modeling in FDM 3D printing process. Rapid Prototyping Journal, 27, 507‒517. https://doi.org/10.1108/RPJ-03-2020-0046.

Joshi, S.; Nair, R.; Dwivedi, K.; Gadhiya, B.; Sapre, M. S.; Jatti, A. V. (2024). Supervised machine learning based classification of dimensional deviation of FDM 3D printed samples. Sustainable Materials, 121-144. https://doi.org/10.1201/9781003437369.

Potnis, M. S.; Singh, A.; Jatti, V. S.; Sapre, M. S.; Pathak, S.; Joshi, S.; Jatti, A. V. (2024). Part quality investigation in fused deposition modelling using machine learning classifiers. International Journal on Interactive Design and Manufacturing, 18, 305‒329. https://doi.org/10.1007/s12008-023-01493-4.

Zhang, Z.; Femi-Oyetoro, J.; Fidan, I.; Ismail, M.; Allen, M. (2021). Prediction of dimensional changes of low-cost metal material extrusion fabricated parts using machine learning techniques. Metals, 11, 690. https://doi.org/10.3390/met11050690.

Agarwal, K. M.; Shubham, P.; Bhatia, D.; Sharma, P.; Vaid, H.; Vajpeyi, R. (2022). Analyzing the impact of print parameters on dimensional variation of ABS specimens printed using fused deposition modelling (FDM). Sensors International, 3, 100149. https://doi.org/10.1016/j.sintl.2021.100149.

Deb, J. B.; Chowdhury, S.; Chowdhury, S.; Paul, G.; Pal, T.; Deb, J.; Deb, S. (2024). Machine acceleration time series prediction for dimensional accuracy of 3D printed parts. Data Science and Management. https://doi.org/10.1016/j.dsm.2024.02.002.

About this article

SUBMITTED: 11 October 2024
ACCEPTED: 04 November 2024
PUBLISHED: 17 November 2024
SUBMITTED to ACCEPTED: 25 days
DOI: https://doi.org/10.53623/gisa.v4i2.522

Cite this article
Setiawan, K. S. ., Tanaji, I. P., Permana, A. ., Akbar, H. N. ., Prihatmaja, D. A. A. ., Normasari, N. M. E. ., Rifai, A. P., & Pamungkasari, P. D. . (2024). Artificial Neural Network for Benchmarking the Dimensional Accuracy of the PLA Fused Flament Fabrication Process. Green Intelligent Systems and Applications, 4(2), 89–97. https://doi.org/10.53623/gisa.v4i2.522
Keywords
Accessed
89
Citations
0
Share this article