
 

89 

 

Research Article 

Volume 4(2), 2024, 89‒97 

https://doi.org/10.53623/gisa.v4i2.522  

Artificial Neural Network for Benchmarking the 

Dimensional Accuracy of the PLA Fused Flament 

Fabrication Process 

Kevin Stephen Setiawan1, Irvantara Pradmaputra Tanaji1, Ari Permana1, Hafizh Naufaly 

Akbar1, Dhonadio Aurell Azhar Prihatmaja1, Nur Mayke Eka Normasari1, Achmad 

Pratama Rifai1*, Panca Dewi Pamungkasari2 

1Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia 
2Faculty of Computer Information Technology, Universitas Nasional, Jakarta, Indonesia 
 
*Correspondence: achmad.p.rifai@ugm.ac.id   

SUBMITTED: 11 October 2024; REVISED: 29 October 2024; ACCEPTED: 4 November 2024 

ABSTRACT: Fused Deposition Modeling (FDM) is an additive manufacturing technique that 
uses a 3D printer to extrude molten filament through a nozzle, which moves along the X, Y, 
and Z axes to create parts with the desired geometry. FDM offers numerous advantages, 
especially for producing parts with complex shapes, due to its ability to enable rapid and cost-
effective manufacturing compared to traditional methods. This study implemented an 
Artificial Neural Network (ANN) to optimize process parameters aimed at minimizing 
dimensional inaccuracies in the FDM process. Key parameters considered for optimization 
included the number of shells, infill percentage, and nozzle temperature. The ANN utilized 
three algorithms: Scaled Conjugate Gradient, Bayesian Regularization, and Levenberg-
Marquardt. Model performance was evaluated based on dimensional deviations along the X 
and Y axes, with a hidden layer of 25 neurons. Among the algorithms, Scaled Conjugate 
Gradient provided the most accurate results in minimizing dimensional errors. 
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1. Introduction  

The FDM process, commonly referred to as 3D printing or Fused Filament Fabrication (FFF), 
has gained widespread adoption in the industrial sector due to its ease of use, versatility, and 
cost-effectiveness. FDM constructs physical objects by depositing material layer by layer, 
offering distinct advantages such as the ability to produce complex shapes quickly and at a 
lower cost compared to traditional manufacturing [1]. As an additive manufacturing process, 
FDM works by extruding molten filament material through a nozzle, which moves along the 
X, Y, and Z axes to build parts layer by layer. This method is especially advantageous for 
producing parts with complex geometries that would be difficult or expensive to manufacture 
using conventional methods. 

Despite these benefits, a primary limitation of FDM is its lack of dimensional accuracy 
[2], which directly impacts the product's tolerance and usability. This shortcoming limits 
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broader industrial application, as dimensional precision is crucial for ensuring manufactured 
parts meet design specifications. When parts deviate from specified tolerances, especially in 
assemblies involving components like holes and shafts, the result can be unusable or difficult-
to-fit products. Improving dimensional accuracy in FDM has therefore become a key area of 
research in the field. 

Several factors affect the dimensional accuracy and surface quality of FDM-
manufactured parts, including material type, infill percentage, number of shells, nozzle 
temperature, and layer thickness, which all impact material flow through the nozzle [3]. 
Traditionally, researchers have employed statistical design approaches to identify optimal 
process parameters to enhance dimensional accuracy. However, advancements in machine 
learning, particularly with Artificial Neural Networks (ANNs), have opened new avenues for 
optimization. 

Previous studies have explored various approaches to optimize FDM parameters. For 
example, Aslani et al. [4] applied the Grey Taguchi method to benchmark the dimensional 
accuracy of PLA filaments, while Mohamed et al. [5] focused on optimizing FDM parameters 
for ABS to improve mechanical properties using statistical methods. Other studies, such as 
Beniak et al.'s work [6], examined the effects of layer thickness and printing temperature on 
part accuracy. Dey and Yodo [7] reviewed factors influencing dimensional accuracy, surface 
quality, and mechanical properties, revealing that smaller layer thickness, a higher number of 
shells, and optimal extrusion temperature improve dimensional accuracy. 

Additional studies by Turner and Gold [8] highlighted the importance of controlling 
material flow from the print head and minimizing warping and shrinkage caused by heat. 
Valerga et al. [9] studied FDM PLA filaments, identifying extrusion temperature, material 
pigments, and environmental humidity as key factors affecting dimensional accuracy, surface 
quality, and mechanical strength. 

Moza et al. [10] found that dimensional accuracy on the XY plane is mainly influenced 
by print material, infill rate, number of shells, and layer thickness. PLA was found to provide 
better dimensional accuracy than ABS. Alafaghani’s study on six process parameters 
concluded that build orientation, extrusion temperature, and layer height most significantly 
impact dimensional accuracy. Sudin et al. [11] found that FDM machines struggle to maintain 
accuracy when producing circular components, exceeding tolerance limits in parts like 
cylinders and holes. 

Further research, including Alafaghani et al.'s work [12] using Taguchi DOE, indicated 
that low infill percentage, specific infill patterns, and thin layers enhance dimensional accuracy, 
while strength improves with higher values and a triangular pattern. Mahmood et al. [13] 
examined ABS filament geometric characteristics and found that the number of shells is the 
most critical factor affecting dimensional accuracy, followed by inset distance multiplier, shell 
spacing, and ambient temperature. 

Minetola and Galati [14] studied low-cost 3D printers and found that enhancing structural 
stiffness and reducing noise significantly improves print quality. Vishwas et al.'s [15] 
optimization of process parameters for FDM printing with ABS and nylon concluded that 
specific combinations of layer thickness, orientation angle, and shell thickness yield the best 
dimensional accuracy and tensile strength. 

From the literature, several conclusions can be drawn. First, improving printer stiffness 
and reducing noise are essential for high-performance FDM prints. Second, the geometry and 
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deposition angle of the STL model strongly influence the quality of 3D-printed parts. Third, 
layer thickness plays a limited role in XY-plane dimensional accuracy at a zero-degree 
deposition angle, but smaller layer thicknesses improve accuracy as the angle increases. Fourth, 
the number of shells, infill rate, and infill pattern significantly impact the final product quality. 

Several studies have explored machine learning models to predict dimensional deviation 
in FDM. Sharma et al. [16] used a Decision Tree algorithm to model dimensional accuracy 
across various geometries such as cylindrical shafts and rectangular slots, achieving an R² score 
of 0.67. Mohamed et al. [17] introduced a novel approach combining definitive screening 
design (DSD) with an ANN to evaluate and predict dimensional deviations in FDM-produced 
cylindrical parts, effectively minimizing experimental efforts while optimizing fabrication 
conditions. 

Charalampous et al. [18] employed regression-based machine learning algorithms to 
create predictive models for dimensional deviations, providing insights into process conditions 
and demonstrating machine learning's potential to enhance FDM precision in complex, real-
world applications. Joshi et al. [19] examined dimensional accuracy through classification 
methods using K-Nearest Neighbors (KNN), Kernel Approximation, and Stochastic Gradient 
Descent (SGD) algorithms. Their approach, based on supervised machine learning classifiers, 
showed that Kernel Approximation and SGD outperformed KNN, underscoring the utility of 
these algorithms for categorizing deviations and informing parameter selection to enhance part 
accuracy. Other methods used for dimensional accuracy prediction in FDM include fuzzy 
inference systems [2], logistic regression [20], Gaussian Naïve Bayes [20], linear regression 
with interactions [21], Response Surface Methodology [22], and recurrent neural networks 
[23]. 

ANN was selected for this study due to its capacity to model nonlinear relationships 
between input parameters (number of shells, infill percentage, nozzle temperature) and 
dimensional deviations in the FDM process. The ANN’s architecture, with a hidden layer of 
25 neurons, effectively captures complex interactions among parameters, leading to more 
accurate predictions of dimensional errors. Additionally, ANNs offer flexibility in adjusting 
model depth, making them suitable for both smaller and larger datasets. 

This study aims to address the critical issue of dimensional accuracy in the FDM process 
by using an ANN to optimize key process parameters. Despite FDM's growing popularity in 
industrial applications for its cost-effectiveness and ability to produce complex geometries, 
dimensional inaccuracies continue to hinder its broader adoption for precision parts. The goal 
of this research is to identify the optimal combination of parameters—such as the number of 
shells, infill percentage, pattern, and nozzle temperature—to minimize dimensional errors in 
FDM-produced parts. By leveraging experimental data and machine learning techniques, this 
study seeks to advance FDM technology, ensuring higher accuracy and reliability in 
manufacturing and expanding its applicability in industries that demand tight tolerances and 
high precision. 

2. Materials and Methods 

This section describes the methods used in the study, including analytical approaches. An 
Artificial Neural Network (ANN) was employed to investigate the effect of 3D printing process 
parameters on the dimensional error of 3D-printed PLA plastic. The fitting method was chosen 
for the ANN due to its suitability for the data used and its capability to provide numerical 
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output. Three types of training algorithms were applied, resulting in diverse outcomes for 
comparative analysis. The algorithms included the Scaled Conjugate Gradient (SCG), Bayesian 
Regularization, and Levenberg-Marquardt. 

Three input parameters were utilized, with nine data points for each parameter (resulting 
in an input matrix of size 9x3). The input parameters were the number of shells, nozzle 
temperature, and infill percentage, as shown in Table 1. The output consisted of two 
parameters, each with nine data points (output matrix size 9x2), representing deviations along 
the X-axis and Y-axis, as shown in Table 2. Prior to training, the data were normalized to a 
range of 0-1. The dataset was then split, allocating 70% for training, 15% for validation, and 
15% for testing. 

In the prediction model, a single hidden layer with 25 neurons was used. The input layer 
contained three neurons corresponding to the inputs—number of shells, temperature, and 
infill—while the output layer contained two neurons, representing deviations in the X and Y 
directions. Figure 1 provides an illustration of the architecture of the developed prediction 
model. 

 

Table 1. Input data. 
Exp. 

No. 

Original value  Normalized value 

Number of 

Cells (-) 

Temperature 

(°C) 

Infill 

(%) 

Pattern 

(-) 

 Number of 

Cells (-) 

Temperature 

(°C) 

Infill 

(%) 

1 2 210 10 E  0 0 0 
2 2 220 15 D  0 0.5 0.5 
3 2 230 20 R  0 1 1 
4 3 210 15 R  1 0 0.5 
5 3 220 20 E  1 0.5 1 
6 3 230 10 D  1 1 0 
7 2 210 20 D  0 0 1 
8 2 220 10 R  0 0.5 0 
9 2 230 15 E  0 1 0.5 

 
Table 2. Output data. 

Feature Nominal 

dimension (mm) 

 Measured dimension (mm)  Normalized 

value 

 X-dir Y-dir  X-dir Y-dir  X-dir Y-dir 

  Avg. Dev. Avg. Dev. 

A 5 20  5.063 0.063 19.940 0.060  0.224 0.357 
    5.063 0.063 19.850 0.150  0.224 1 
    5.040 0.040 19.890 0.110  0.132 0.714 
    5.113 0.113 19.990 0.010  0.424 0 
    4.963 0.037 19.930 0.070  0.12 0.428 
    5.090 0.090 20.030 0.030  0.332 0.143 
    5.070 0.070 19.920 0.080  0.252 0.5 
    5.257 0.257 19.890 0.110  1 0.714 
    5.007 0.007 19.920 0.080  0 0.5 

 

 
Figure 1. ANN architecture. 
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3. Results and Discussion 

Figure 2 illustrates the Mean Squared Error (MSE) plot throughout the training process. For 
the Scaled Conjugate Gradient algorithm, training halted after 14 iterations. A continuous 
decrease in MSE was observed in the training data with each iteration, while the validation and 
test data maintained relatively stable MSE values, reaching their lowest point at the 8th iteration 
with an MSE of 0.00043918. In the training state plot, a gradient of 0.00011141 was noted, 
with 6 validation checks at the 14th epoch. The error histogram plot shows that errors during 
the test and validation phases remained somewhat distant from zero, indicating residual 
inaccuracies. However, the regression plot displayed an R-value close to 1, suggesting a strong 
correlation. 

The MSE plot highlights a discrepancy between the training curve and the validation and 
test curves, suggesting possible underfitting. This may be attributed to the limited dataset, as 
the training set contained only nine data points. Complete training and testing results for the 
prediction model using the Scaled Conjugate Gradient algorithm are shown in the gradient plot 
in Figure 3, the error histogram plot in Figure 4, and the regression plot in Figure 5. 
Subsequently, results for the Bayesian Regularization Algorithm are provided in Figures 6 and 
7, while results for the Levenberg-Marquardt algorithm are presented in Figures 8 and 9 

 

  
Figure 2. Mean squared error plot. Figure 3. Gradient model plot using scaled conjugate 

gradient. 
 

  
Figure 4. Error histogram graph model using scaled 

conjugate gradient. 
Figure 5. Plot regression model using scaled 

conjugate gradient. 
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Figure 6. Error histogram graph model using 

Bayesian regression. 
Figure 7. Plot regression model using Bayesian 

regression. 
 

  
Figure 8. Error histogram graph model using 

Levenberg-Marquardt. 
Figure 9. Plot regression model using Levenberg-

Marquardt. 

In the prediction model trained with the Bayesian Regularization Algorithm, Figure 6’s 
error histogram plot reveals that errors during the test phase remained considerably distant from 
zero. Additionally, Figure 7’s regression plot indicates suboptimal outcomes, as the R-value 
for both training and testing across all data was substantially below 1. In the prediction model 
trained using the Levenberg-Marquardt Algorithm, Figure 8’s error histogram plot shows that 
errors did not converge close to zero. The regression plot in Figure 9 shows an overall R-value 
that remains far from 1, though the R-values for the training and test sets were close to 1. 

Table 3. Comparison of R-values. 

 Training All 

Scaled Conjugate Gradient 0.97 0.91 
Bayesian Regression 0.02 0.06 
Levenberg-Marquardt 0.89 0.46 

 
Table 3 presents a comparison of R-values for the three algorithms. The results reveal 

notable differences in the performance of the Scaled Conjugate Gradient (SCG), Bayesian 



Green Intelligent Systems and Applications 4(2), 2024, 89‒97 

95 

 

Regression, and Levenberg-Marquardt (LM) algorithms, evaluated by their accuracy in both 
training and overall testing. The SCG algorithm excelled, achieving an impressive 97% 
accuracy on the training set and a robust 91% accuracy overall. This consistency indicates that 
SCG not only effectively learned patterns within the training data but also generalized well to 
new data. Its strong performance across both measures suggests SCG’s suitability for this 
application, providing reliable predictions for similar datasets. 

In contrast, Bayesian Regression performed poorly, reaching just 2% accuracy during 
training and only slightly improving to 6% overall. These low scores indicate that Bayesian 
Regression failed to capture meaningful relationships within the data, making it ineffective for 
this predictive task. This may reflect an incompatibility between the requirements of this 
application and the assumptions or structure of Bayesian Regression. The LM algorithm 
produced mixed results, achieving a high 89% accuracy on the training set but dropping sharply 
to 46% overall. This decline suggests that LM overfitted the training data; while it captured 
specifics of the training set well, it struggled to generalize effectively to new data. This pattern 
of overfitting indicates that further adjustments, such as regularization or parameter tuning, 
may be needed to improve its generalizability. The SCG algorithm demonstrated the best 
overall performance, proving both accurate and consistent. While LM showed some potential, 
it would require refinement to avoid overfitting, whereas Bayesian Regression did not prove 
effective for this application. 

4. Conclusions 

The training results from the three different algorithms still showed suboptimal outcomes and 
did not fully represent actual data conditions due to the limited dataset available from the 
journal. Nevertheless, among the three algorithms, the Scaled Conjugate Gradient (SCG) 
method demonstrated relatively better results than the others. When applying an Artificial 
Neural Network (ANN) to minimize dimensional errors in 3D-printed PLA plastic, this 
approach proved effective in identifying optimal parameters to reduce these errors. By 
improving parameter selection, ANN has the potential to contribute to producing more accurate 
and higher-quality products in additive manufacturing, as it can identify the ideal conditions 
for the 3D printing process. A key limitation of this study, however, was the insufficient amount 
of data. A larger dataset would enhance the accuracy of the model's learning process. 
Additionally, incorporating other intelligent algorithms, such as backpropagation neural 
networks or learning vector quantization, could further improve the results. The author believes 
that using the SCG method could yield more accurate predictions of dimensional errors in 3D-
printed PLA plastic. Based on the experiments, SCG consistently produced better results 
compared to the other methods. This ANN approach could also be extended to Fused 
Deposition Modeling (FDM) with other PLA variants, such as carbon fiber PLA or wood PLA, 
by adjusting or modifying the process parameters accordingly. 
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