Liong, R.M.Y.; Hadibarata, T.; Yuniarto, A.; Tang, K.H.D.; Khamidun, M.H. (2021). Microplastic Occurrence in the Water and Sediment of Miri River Estuary, Borneo Island. Water, Air, & Soil Pollution, 232, 342. https://doi.org/10.1007/s11270-021-05297-8.
Plastics - the Facts 2021. (accessed on 1 November 2022) Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/.
Roland, G.R.J.J.; Lavender, L.K. (2022). Production, use, and fate of all plastics ever made. Science Advances, 3, e1700782. https://doi.org/10.1126/sciadv.1700782.
Teymourian, T.; Teymoorian, T.; Kowsari, E.; Ramakrishna, S. (2021). Challenges, Strategies, and Recommendations for the Huge Surge in Plastic and Medical Waste during the Global COVID-19 Pandemic with Circular Economy Approach. Materials Circular Economy, 3, 6. https://doi.org/10.1007/s42824-021-00020-8.
Ganesh Kumar, A.; Anjana, K.; Hinduja, M.; Sujitha, K.; Dharani, G. (2020). Review on plastic wastes in marine environment – Biodegradation and biotechnological solutions. Marine Pollution Bulletin, 150, 110733. https://doi.org/10.1016/j.marpolbul.2019.110733.
Plastic pollution is growing relentlessly as waste management and recycling fall short, says OECD. (accessed on 1 November 2022) Available online: https://www.oecd.org/newsroom/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.htm.
Tang, K.H.D. (2022). Medical Waste during COVID-19 Pandemic: Its Types, Abundance, Impacts and Implications. Industrial and Domestic Waste Management, 2, 71–83. https://doi.org/10.53623/idwm.v2i2.117.
Li, C.; Tang, K.H.D. (2023). Effects of pH and Temperature on the Leaching of Di (2-Ethylhexyl) Phthalate and Di-n-butyl Phthalate from Microplastics in Simulated Marine Environment. Biointerface Research in Applied Chemistry, 13. https://doi.org/10.33263/BRIAC133.269.
Tang, K.H.D. (2022). Abundance of Microplastics in Wastewater Treatment Sludge. Journal of Human, Earth, and Future, 3, 138–146. https://doi.org/10.28991/HEF-2022-03-01-010.
Tang, K.H.D.; Hadibarata, T. (2022). The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective. Bioprocess and Biosystems Engineering, 45, 1865–1878. https://doi.org/10.1007/s00449-022-02793-x.
Karbalaei, S.; Hanachi, P.; Walker, T.R.; Cole, M. (2018). Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environmental Science and Pollution Research, 25, 36046–36063. https://doi.org/10.1007/s11356-018-3508-7.
Lebreton, L.; Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5, 6. https://doi.org/10.1057/s41599-018-0212-7.
Ogundairo, T.O.; Olukanni, D.O.; Akinwumi, I.I.; Adegoke, D.D. (2021). A review on plastic waste as sustainable resource in civil engineering applications. IOP Conference Series: Materials Science and Engineering, 1036, 12019. https://doi.org/10.1088/1757-899X/1036/1/012019.
Ru, J.; Huo, Y.; Yang, Y. (2020). Microbial Degradation and Valorization of Plastic Wastes. Frontiers in Microbiology, 11, 442. https://doi.org/10.3389/fmicb.2020.00442.
Maina, S.; Kachrimanidou, V.; Koutinas, A. (2017). A roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry, 8, 18–23. https://doi.org/10.1016/j.cogsc.2017.07.007.
Das, P.; Tiwari, P. (2018). Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation and Recycling, 128, 69–77. https://doi.org/10.1016/j.resconrec.2017.09.025.
Chen, A.; Yang, M.-Q.; Wang, S.; Qian, Q. (2021). Recent Advancements in Photocatalytic Valorization of Plastic Waste to Chemicals and Fuels. Frontiers in Nanotechnology, 3, 723120. https://doi.org/10.3389/fnano.2021.723120.
Lopez, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346–368. https://doi.org/10.1016/j.rser.2017.01.142.
Al-Salem, S.M.; Lettieri, P.; Baeyens, J. (2010). The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Progress in Energy and Combustion Science, 36, 103–129. https://doi.org/10.1016/j.pecs.2009.09.001.
Mondal, M.K.; Bose, B.P.; Bansal, P. (2019). Recycling waste thermoplastic for energy efficient construction materials: An experimental investigation. Journal of Environmental Management, 240, 119–125. https://doi.org/10.1016/j.jenvman.2019.03.016.
Ruiz-Herrero, J.L.; Velasco Nieto, D.; López-Gil, A.; Arranz, A.; Fernández, A.; Lorenzana, A.; Merino, S.; De Saja, J.A.; Rodríguez-Pérez, M.Á. (2016). Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste. Construction and Building Materials, 104, 298–310. https://doi.org/10.1016/j.conbuildmat.2015.12.005.
Toghroli, A.; Shariati, M.; Sajedi, F.; Ibrahim, Z.; Koting, S.; Mohamad, E.T.; Khorami, M. (2018). A review on pavement porous concrete using recycled waste materials. Smart Structures and Systems, 22, 433–440. https://doi.org/10.12989/sss.2018.22.4.433.
Singh, S.; Dwivedi, S.P.; Kumar, A.; Anand, V.; Vikram Singh, V.; Tauqueer Ansari, M. (2021). A critical review on the utilization of waste PET and marble dust in the development of composite material. Materials Today: Proceedings, 47, 4034–4040. https://doi.org/10.1016/j.matpr.2021.04.535.
Tang, K.H.D. (2019). Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons: A Review of Recent Literature. Global Journal of Civil and Environmental Engineering, 1, 33–42. https://doi.org/10.36811/gjcee.2019.110006.
Tang, K.H.D. (2019). Are We Already in a Climate Crisis? Global Journal of Civil and Environmental Engineering, 1, 25–32.
Aneke, F.I.; Shabangu, C. (2021). Green-efficient masonry bricks produced from scrap plastic waste and foundry sand. Case Studies in Construction Materials, 14, e00515. https://doi.org/10.1016/j.cscm.2021.e00515.
Ikechukwu, A.F.; Shabangu, C. (2021). Strength and durability performance of masonry bricks produced with crushed glass and melted PET plastics. Case Studies in Construction Materials, 14, e00542. https://doi.org/10.1016/j.cscm.2021.e00542.
Akinwumi, I.I.; Domo-Spiff, A.H.; Salami, A. (2019). Marine plastic pollution and affordable housing challenge: Shredded waste plastic stabilized soil for producing compressed earth bricks. Case Studies in Construction Materials, 11, e00241. https://doi.org/10.1016/j.cscm.2019.e00241.
Safinia, S.; Alkalbani, A. (2016). Use of Recycled Plastic Water Bottles in Concrete Blocks. Procedia Engineering, 164, 214–221. https://doi.org/10.1016/j.proeng.2016.11.612.
Leela Bharathi, S. M., Johnpaul, V., Praveen Kumar, R., Surya, R., & Vishnu Kumar, T. (2020). WITHDRAWN: Experimental investigation on compressive behaviour of plastic brick using M Sand as fine aggregate. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.252.
Velmurugan, V.; Gokul Raj, R.; Harinisree, A. (2019). Rebuilding of plastic waste to pavement bricks. International Journal for Research in Applied Science and Engineering Technology, 7, 927–931. http://doi.org/10.22214/ijraset.2019.4165.
Maneeth, P.D.; Pramod, K.; Kumar, K.; Shetty, S. (2018). Utilization of waste plastic in manufacturing of plastic-soil bricks. International Journal of Technology Enhancements and Emerging Engineering Research, 2, 102–107.
Selvamani, G.D.; Sabarish, P.; Thulasikanth, Y.; Vinoth Kumar, E. (2019). Preparation of bricks using sand and waste plastic bottles. International Research Journal in Advanced Engineering and Technology (IRJAET), 5, 4341–4352.
Akinyele, J.O.; Igba, U.T.; Adigun, B.G. (2020). Effect of waste PET on the structural properties of burnt bricks. Scientific African, 7, e00301. https://doi.org/10.1016/j.sciaf.2020.e00301.
Kognole, R.S.; Shipkule, K.; Patil, M.; Patil, L.; Survase, U. (2019). Utilization of plastic waste for making plastic bricks. International Journal of Trend in Scientific Research and Development, 3, 878–880. http://doi.org/10.31142/ijtsrd23938.
Monish, K.; Jesuran, J.J.; Kolathayar, S. (2021). A sustainable approach to turn plastic waste into useful construction blocks. In Smart Technologies for Sustainable Development, Lecture Notes in Civil Engineering; Shukla, S.K., Chandrasekaran, S., Das, B.B., Kolathayar, S., Eds.; Springer, Singapore, Volume 78, pp. 55–62. https://doi.org/10.1007/978-981-15-5001-0_5.
Sonone, P.; Devalkar, R. (2017). Green sustainable bricks made of fly ash and discarded polyethylene waste. International Journal of Innovative Research in Science, Engineering and Technology, 6(4), 6509.
Lalzarliana Paihte, P.; Lalngaihawma, A.C.; Saini, G. (2019). Recycled Aggregate filled waste plastic bottles as a replacement of bricks. Materials Today: Proceedings, 15, 663–668. https://doi.org/10.1016/j.matpr.2019.04.135.
Mansour, A.M.H.; Ali, S.A. (2015). Reusing waste plastic bottles as an alternative sustainable building material. Energy for Sustainable Development, 24, 79–85. https://doi.org/10.1016/j.esd.2014.11.001.
Taaffe, J.; O’Sullivan, S.; Rahman, M.E.; Pakrashi, V. (2014). Experimental characterisation of Polyethylene Terephthalate (PET) bottle Eco-bricks. Materials & Design, 60, 50–56. https://doi.org/10.1016/j.matdes.2014.03.045.
Limami, H.; Manssouri, I.; Cherkaoui, K.; Saadaoui, M.; Khaldoun, A. (2020). Thermal performance of unfired lightweight clay bricks with HDPE & PET waste plastics additives. Journal of Building Engineering, 30, 101251. https://doi.org/10.1016/j.jobe.2020.101251.
Alaloul, W.S., John, V.O.; Musarat, M.A. (2020). Mechanical and Thermal Properties of Interlocking Bricks Utilizing Wasted Polyethylene Terephthalate. International Journal of Concrete Structures and Materials, 14, 24. https://doi.org/10.1186/s40069-020-00399-9.
Dalhat, M.A.; Al-Abdul Wahhab, H.I. (2016). Cement-less and asphalt-less concrete bounded by recycled plastic. Construction and Building Materials, 119, 206–214. https://doi.org/10.1016/j.conbuildmat.2016.05.010.
Hameed, A.M.; Fatah Ahmed, B.A. (2019). Employment the plastic waste to produce the light weight concrete. Energy Procedia, 157, 30–38. https://doi.org/10.1016/j.egypro.2018.11.160.
Dombe, S.; Tapase, A.B.; Ghugal, Y.M.; Konnur, B.A.; Akshay, P. (2020). Investigation on the Use of E-Waste and Waste Plastic in Road Construction BT. In Recent Developments in Pavement Engineering; Badawy, S., Chen, D.-H., Eds.; Springer International Publishing, Cham, Switzerland, pp. 85–99.
Basha, S.I.; Ali, M.R.; Al-Dulaijan, S.U.; Maslehuddin, M. (2020). Mechanical and thermal properties of lightweight recycled plastic aggregate concrete. Journal of Building Engineering, 32, 101710. https://doi.org/10.1016/j.jobe.2020.101710.
Olofinnade, O.; Chandra, S.; Chakraborty, P. (2021). Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Materials Today: Proceedings, 38, 2151–2156. https://doi.org/10.1016/j.matpr.2020.05.176.
Jain, A.; Siddique, S.; Gupta, T.; Jain, S.; Sharma, R.K.; Chaudhary, S. (2019). Fresh, Strength, Durability and Microstructural Properties of Shredded Waste Plastic Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43, 455–465. https://doi.org/10.1007/s40996-018-0178-0.
Belmokaddem, M.; Mahi, A.; Senhadji, Y.; Pekmezci, B.Y. (2020). Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Construction and Building Materials, 257, 119559. https://doi.org/10.1016/j.conbuildmat.2020.119559.
Abukhettala, M.; Fall, M. (2021). Geotechnical characterization of plastic waste materials in pavement subgrade applications. Transportation Geotechnics, 27, 100472. https://doi.org/10.1016/j.trgeo.2020.100472.
Russo, F.; Eskandarsefat, S.; Venturini, L.; Viscione, N. (2022). A complete study on an asphalt concrete modified with graphene and recycled hard-plastics: A case study. Case Studies in Construction Materials, 17, e01437. https://doi.org/10.1016/j.cscm.2022.e01437.
Gavhane, A.; Sutar, D.; Soni, S.; Patil, P. (2016). Utilisation of E-plastic waste in concrete. International Journal of Engineering Research & Technology, 5, 594–601.
Bahoria, B.V.; Parbat, D.K.; Nagarnaik, P.B.; Waghe, U.P. (2017). Effect of characterization properties on compressive strength of concrete containing quarry dust and waste plastic as fine aggregate. International Journal of Civil Engineering and Technology, 8, 699–707.
Shiri, N.D.; Krafft, M.S.; Thurm, W. (2019). Plastic lumber product development using commingled waste plastics. AIP Conference Proceedings, 2080, 50007. https://doi.org/10.1063/1.5092935.
Chauhan, V.; Varis, J.; Kärki, T. (2019). The Potential of Reusing Technical Plastics. Procedia Manufacturing, 39, 502–508. https://doi.org/10.1016/j.promfg.2020.01.407.
Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G. C. (2016). Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Construction and Building Materials, 112, 716–724. https://doi.org/10.1016/j.conbuildmat.2016.02.218.
Tang, K.H.D. (2020). A comparative overview of the primary Southeast Asian safety and health laws. International Journal of Workplace Health Management. 13, 601–632. https://doi.org/10.1108/IJWHM-10-2019-0132.
Tang, K.H.D. (2021). The effects of climate change on occupational safety and health. Global Journal of Civil and Environmental Engineering, 3, 1–10. https://doi.org/10.36811/gjcee.2021.110008.
Tang, K.H.D. (2020). Implications of Climate Change on Marine Biodiversity. Global Journal of Agriculture and Soil Science, 1, 1–6.
Gaggino, R.; Positieri, M.J.; Irico, P.; Kreiker, J.; Arguello, R.; Sánchez, M.P.A. (2014). Ecological Roofing Tiles Made with Rubber and Plastic Wastes. Advanced Materials Research, 844, 458–461. https://doi.org/10.4028/www.scientific.net/AMR.844.458.
SUBMITTED: 02 November 2022
ACCEPTED: 02 December 2022
PUBLISHED:
6 December 2022
SUBMITTED to ACCEPTED: 30 days
DOI:
https://doi.org/10.53623/csue.v2i2.141