Nagarkar, V.; Padalkar, S.; Bhamre, S.; Tupe, A. (2017). Environmental Study on Green Concrete. International Research Journal of Engineering and Technology, 5, 702–705. https://doi.org/10.22214/ijraset.2017.4126.
Sormunen, P.; Karki, T. (2019). Recycled construction and demolition waste as a possiblesource of materials for composite manufacturing. Journal of Building Engineering, 24, 100742. https://doi.org/10.1016/j.jobe.2019.100742.
Sandanayake, M.; Gunasekara, C.; Law, D.; Zhang, G.; Setunge, S.; Wanjiru, D. (2020). Sustainable criterion selection framework for green building materials – an optimisation based study of fly-ash Geopolymer concrete. Sustainable Materials and Technologies, 25, e00178. https://doi.org/10.1016/j.susmat.2020.e00178.
Wagih, A.M.; El-Karmoty, H.Z.; Ebid, M.; Okba, S.H. (2013). Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC Journal, 9, 193 – 200. https://doi.org/10.1016/j.hbrcj.2013.08.007.
Oh, D.Y.; Noguchi, T.; Kitagaki, R.; Park, W.J. (2014). CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renewable and Sustainable Energy Reviews, 38, 796–810. https://doi.org/10.1016/j.rser.2014.07.036.
Zhang, C.; Hu, M.; Yang, X.; Miranda-Xicotencatl, B.; Sprecher, B.; Maio, F.D.; Zhong, X.; Tukker, A. (2020). Upgrading construction and demolition waste management from downcycling to recycling in the Netherlands. Journal of Cleaner Production, 266, 121718. https://doi.org/10.1016/j.jclepro.2020.121718.
Arel, H.S. (2016). Recyclability of waste marble in concrete production. Journal of Cleaner Production, 131, 179–188. https://doi.org/10.1016/j.jclepro.2016.05.052.
Corinaldesi, V.; Moriconi, G.; Naik, T.R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24, 113–117. https://doi.org/10.1016/j.conbuildmat.2009.08.013.
Gursel, A.P.; Maryman, H.; Ostertag, C. (2016). A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. Journal of Cleaner Production, 112, 823 – 836. https://doi.org/10.1016/j.jclepro.2015.06.029.
Rodriguez, A.; Manso, J.M.; Aragon, A.; Gonzalez, J.J. (2009). Strength and workability of masonry mortars manufactured with ladle furnace slag. Resources, Conservation and Recycling, 53, 645 – 651. https://doi.org/10.1016/j.resconrec.2009.04.015.
Wesseling, J.H.; Van der Vooren, A. (2017). Lock-in of mature innovation systems: the transformation toward clean concrete in the Netherlands. Journal of Cleaner Production, 155, 114 – 124. https://doi.org/10.1016/j.jclepro.2016.08.115.
Khan, S.; Maheshwari, N.; Aglave, G.; Arora, R. (2020). Experimental design of green concrete and assessing its suitability as a sustainable building material. Materials Today: Proceedings, 26, 1126–1130. https://doi.org/10.1016/j.matpr.2020.02.225.
Li, Y.; Qiao, C.; Ni, W. (2020). Green concrete with ground granulated blast-furnace slag activated by desulfurization gypsum and electric arc furnace reducing slag. Journal of Cleaner Production, 269, 122212. https://doi.org/10.1016/j.jclepro.2020.122212.
Shukla, A.; Gupta, N.; Gupta, A. (2020). Development of green concrete using waste marble dust. Materials Today: Proceedings, 26, 2590–2594. https://doi.org/10.1016/j.matpr.2020.02.548.
Sivakrishna, A.; Adesina, A.; Awoyera, P.O.; Kumar, K.R. (2020). Green concrete: A review of recent developments. Materials Today: Proceedings, 27, 54–58. https://doi.org/10.1016/j.matpr.2019.08.202.
Vatannia, S.; Kearsley, E.; Mostert, D. (2020). Development of economic, practical and green ultra-high performance fiber reinforced concrete verified by particle packing model. Case Studies in Construction Materials, 13, e00415. https://doi.org/10.1016/j.cscm.2020.e00415.
Radonjanin, V.; Malesev, M.; Marinkovic, S.; Al Malty, A.E.S. (2013). Green recycled aggregate concrete. Construction and Building Materials, 47, 1503–1511. https://doi.org/10.1016/j.conbuildmat.2013.06.076.
Ismail, Z.Z.; Al-Hashmi, E.A. (2009). Recycling of waste glass as a partial replacement for fine aggregate in concrete. Waste Management, 29, 655–659. https://doi.org/10.1016/j.wasman.2008.08.012.
Golewski, G.L. (2018). Green concrete composite incorporating fly ash with high strength and fracture toughness. Journal of Cleaner Production, 172, 218–226. https://doi.org/10.1016/j.jclepro.2017.10.065.
Makul, N. (2020). Advanced smart concrete - A review of current progress, benefits and challenges. Journal of Cleaner Production, 274, 122899. https://doi.org/10.1016/j.jclepro.2020.122899.
Han. B.; Wang, Y.; Dong, S. (2015). Smart concretes and structures: a review. Journal of Intelligent Material Systems and Structures, 26, 1303–1345. https://doi.org/10.1177/1045389X15586452.
Juenger, M.C.G., Winnefeld, F., Provis, J.L., & Ideker, J.H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41, 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
Chidiac, S.E.; Panesar, D.K. (2008). Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days. Cement and Concrete Composites, 30, 63–71. https://doi.org/10.1016/j.cemconcomp.2007.09.003.
Shariq, M.; Prasad, J.; Masood, A. (2010). Effect of GGBFS on time dependent compressive strength of concrete. Construction and Building Materials, 24, 1469–1478. https://doi.org/10.1016/j.conbuildmat.2010.01.007.
Behnood, A.; Ziari, H. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cement and Concrete Composites, 30, 106– 12. https://doi.org/10.1016/j.cemconcomp.2007.06.003.
Hasami, S.; Ahmadi, S.; Nematzadeh, M. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building Materials, 53, 680 – 691. https://doi.org/10.1016/j.conbuildmat.2013.11.070.
Zunino, F.; Lopez, M. (2016). Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multi-level approach. Cement and Concrete Composites, 65, 19 – 28. https://doi.org/10.1016/j.cemconcomp.2015.10.003.
Jin, R.; Chen, Q.; Soboyejo, A. (2015). Survey of the current status of sustainable concrete production in the U.S. Resources, Conservation and Recycling, 105, 148–159. https://doi.org/10.1016/j.resconrec.2015.10.011.
Jin, R., & Chen, Q. (2013). An Investigation of Current Status of “Green” Concrete in the Construction Industry. Paper presented at the 49th ASC Annual International Conference Proceedings, San Luis Obispo, USA.
Blengini, G.A.; Garbarino, E. (2010). Resources and waste management in Turin (Italy): the role of recycled aggregates in the sustainable supply mix. Journal of Cleaner Production, 18, 1021–1030. https://doi.org/10.1016/j.jclepro.2010.01.027.
Coelho, A.; Brito, J.D. (2013). Environmental analysis of a construction and demolition waste recycling plant in Portugal – part I: energy consumption and CO2 emissions. Waste management, 33, 1258–1267. https://doi.org/10.1016/j.wasman.2013.01.025.
Wittmaier, M.; Langer, S.; Sawilla, B. (2009). Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems – applied examples for a region in Northern Germany. Waste Management, 29, 1732–1738. https://doi.org/10.1016/j.wasman.2008.11.004.
Shan, X.; Zhou, J.; Chang, V.W.C.; Yang, E.H. (2017). Life cycle assessment of adoption of local recycled aggregates and green concrete in Singapore perspective. Journal of Cleaner Production, 164, 918 – 926. https://doi.org/10.1016/j.jclepro.2017.07.015.
Megat Johari, M.A.; Brooks, J.J.; Kabir, S.; Rivard, P. (2011). Influence of Supplementary Cementitious Materials on Engineering properties of High Strength Concrete. Journal of Construction and Building Materials, 25, 2639-2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013.
Muthusamy, K.; Zamri, N.; Amirulkhairi, M. (2015). Engineering Effect of Mixing Ingredient on Compressive Strength of Oil Palm Shell Lightweight Aggregate Concrete Containing Palm Oil Fuel Ash. Procedia Engineering, 125, 804-810. https://doi.org/10.1016/j.proeng.2015.11.142.
Azrul, M.; Rajak, A.; Abdul, Z.; Ismail, M. (2015). Morphological Characteristics of Hardened Cement Pastes Incorporating Nano-Palm Oil Fuel Ash. Procedia Manufacturing, 2, 512-518. https://doi.org/10.1016/j.promfg.2015.07.088.
Tambichik, M.A.; Mohamad, N.; Samad, A.A.A.; Bosro, M.Z.M.; Iman, M.A. (2018). Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review. IOP Conference Series: Earth and Environmental Science, 140, 1-9. http://doi.org/10.1088/1755-1315/140/1/012134.
Awal, A.S.M.A.; Shehu, I.A. (2013). Evaluation of heat of hydration of concrete containing high volume palm oil fuel ash. Journal of Fuel, 105, 728-731. https://doi.org/10.1016/j.fuel.2012.10.020.
Chindaprasirt, P.; Homwuttiwong, S.; Jaturapitakkul, C. (2007). Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash. Construction and Building Materials, 21, 1492-1499. https://doi.org/10.1016/j.conbuildmat.2006.06.015.
Tangchirapat, W.; Jaturapitakkul, C.; Chindaprasirt, P. (2009). Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Construction and Building Materials, 23, 2641- 2646. https://doi.org/10.1016/j.conbuildmat.2009.01.008.
Karim, M.R.; Zain, M.F.M.; Jamil, M.; Lai, F.C. (2013). Fabrication of a non-cement binder using slag, palm oil fuel ash and rice husk ash with sodium hydroxide. Journal of Construction and Building Materials, 49, 894–902. https://doi.org/10.1016/j.conbuildmat.2013.08.077.
Ephraim, M.E.;, Akeke, G.A.; Ukpata, J.O. (2012). Compressive strength of concrete with rice husk ash as partial replacement of ordinary Portland cement. Scholary Journal of Engineering Research, 1, 32–36.
Jamil, M.; Khan, M.N.N.; Karim, M.R.; Kaish, A.B.M.A.; Zain. M.F.M. (2016). Physical and chemical contributions of Rice Husk Ash on the properties of mortar. Journal of Construction and Building Materials, 128, 185–198. https://doi.org/10.1016/j.conbuildmat.2016.10.029.
Kubissa, W.; Jaskulski, R.; Koper, A.; Szpetulski, J. (2015). Properties of Concretes with Natural Aggregate Improved by RCA Addition. Procedia Engineering, 108, 30-38. https://doi.org/10.1016/j.proeng.2015.06.116.
Soares, D.; Brito, J.D.; Ferreira, J.; Pacheco, J. (2014). Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance. Journal of Construction and Building Materials, 71, 263–272. https://doi.org/10.1016/j.conbuildmat.2014.08.034.
Nathaniel, O.; Mohd Sam, A.R.; Lim, N.H.A.S.; Adebisi, O.; Abdulkareem, M. (2020). Biogenic approach for concrete durability and sustainability using effective microorganisms: a review. Construction and Building Materials, 261, 119664. https://doi.org/10.1016/j.conbuildmat.2020.119664.
Abid, M.; Hou, X.; Zheng, W.; Waqar, G.Q. (2017). Mechanical properties of steel fiber-reinforced reactive powder concrete at high temperature and after cooling. Procedia Engineering, 210, 597–604. https://doi.org/10.1016/j.proeng.2017.11.119.
Lehne, J.; Prestn, F. (2018). Making concrete change: innovation in low-carbon cement and concrete. London, UK: Energy Environment and Resource Department.
Liew, K.M.; Sojobi, A.O.; Zhang, L.W. (2017). Green concrete: prospects and challenges. Construction and Building Materials, 156, 1063–1095. https://doi.org/10.1016/j.conbuildmat.2017.09.008.
Duxson, P.; Provis, J.L.; Lukey, C.; Van Deventer, J.S.J. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37, 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cement. Cement and Concrete Research, 34, 1489 – 1498. https://doi.org/10.1016/j.cemconres.2004.01.021.
Jiang, L.; He, C.; Fu, J.; Xu, D. (2019). Enhancement of wear and corrosion resistance of polyvinyl chloride/sorghum straw-based composites in cyclic sea water and acid rain conditions. Construction and Building Materials, 223, 133–141. https://doi.org/10.1016/j.conbuildmat.2019.06.216.
SUBMITTED: 03 September 2022
ACCEPTED: 21 October 2022
PUBLISHED:
24 October 2022
SUBMITTED to ACCEPTED: 49 days
DOI:
https://doi.org/10.53623/csue.v2i2.116