Skip to main content

Phytoremediation of Petroleum Hydrocarbons: An Update of Its Recent Progress

Author(s): Kuok Ho Daniel Tang
Author(s) information:
Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA

Corresponding author

Phytoremediation continues to play an important role in the remediation of soils contaminated with hydrocarbons, as demonstrated by the ongoing influx of research articles in this field. A review of the recent literature reveals that studies on phytoremediation continue to assess the effectiveness of both existing and new plant species, particularly in treating contaminated soils. Fertilization and soil amendments are commonly incorporated into these studies. There is significant interest in microbial-assisted phytoremediation and the optimization of phytoremediation with surfactants and root exudates. Phytoremediation using plants alone often encounters limited efficiency (<65% petroleum hydrocarbon removal). However, fertilization, soil amendments, and additives like root exudates can boost efficiency to slightly above 80%, particularly with compost. Microbial-assisted phytoremediation could further increase efficiency to more than 90%, depending on the microorganisms used. Endomycorrhizal fungi and Acinetobacter sp. Tust-DM21 appear to have pronounced enhancing effects on petroleum hydrocarbon removal. Combining and optimizing good agricultural practices, fertilization, soil amendments, additives, and microbial-assisted phytoremediation could enhance overall efficiency while improving plant growth, even in saline or highly contaminated soils. Research on phytoremediation of water contaminated with petroleum hydrocarbons is significantly less prevalent. This review contributes to the identification of effective phytoremediation strategies and suggests that future research could focus on further exploring plant-microbe interactions to improve petroleum hydrocarbon removal. Artificial intelligence could also be incorporated to optimize factors that positively influence phytoremediation.

Tang, K.H.D. (2019). Phytoremediation of soil contaminated with petroleum hydrocarbons: A review of recent literature. Global Journal of Civil and Environmental Engineering, 1, 33‒42.

Eman, K.; Andrew, S.B. (2017). Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiology, 3, 25‒49. http://doi.org/10.3934/microbiol.2017.1.25.

Rossiana, N.; Alipin, K.; Malini, D.; Indrawati, I.; Rahayuningsih, S.R.; Media, N.; Dhahiyat, Y. (2020). Urgency longterm oil sludge biophytoremediation: Acute, subchronic toxicity on liver and kidney rats. Environmental Technology & Innovation, 19, 100766. http://doi.org/10.1016/j.eti.2020.100766.

Hussain, F.; Hussain, I.; Khan, A.H.A.; Muhammad, Y.S.; Iqbal, M.; Soja, G.; Reichenauer, T.G.; Zeshan; Yousaf, S. (2018). Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80‒88. http://doi.org/10.1016/j.envexpbot.2018.05.012.

Tang, K.H.D.; Angela, J. (2019). Phytoremediation of crude oil-contaminated soil with local plant species. IOP Conference Series: Materials Science and Engineering, 495, 012054. http://doi.org/10.1088/1757-899X/495/1/012054.

Tang, K.H.D.; Law, Y.W.E. (2019). Phytoremediation of soil contaminated with crude oil using Mucuna bracteata. Research in Ecology, 1, 20‒30. http://doi.org/10.30564/re.v1i1.739.

Tang, K.H.D.; Chai, H.T.J. (2020). The effect of fertilizer on Epipremnum aureum in phytoremediating soil contaminated with crude oil. IOP Conference Series: Materials Science and Engineering, 943, 012032. http://doi.org/10.1088/1757-899X/943/1/012032.

Kuppusamy, S.; Maddela, N.R.; Megharaj, M.; Venkateswarlu, K. (2020). Impact of total petroleum hydrocarbons on human health. In Total Petroleum Hydrocarbons: Environmental Fate, Toxicity, and Remediation; Kuppusamy,S., Maddela, N.R., Megharaj, M., Venkateswarlu, K., Eds.; Springer International Publishing: Cham, Switzerland, pp. 139‒165.

Ambaye, T.G.; Chebbi, A.; Formicola, F.; Prasad, S.; Gomez, F.H.; Franzetti, A.; Vaccari, M. (2022). Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere, 293, 133572. http://doi.org/10.1016/j.chemosphere.2022.133572.

Tang, K.H.D.; Awa, S.H.; Hadibarata, T. (2020). Phytoremediation of copper-contaminated water with Pistia stratiotes in surface and distilled water. Water, Air, & Soil Pollution, 231, 573. http://doi.org/10.1007/s11270-020-04937-9.

Hauptvogl, M.; Kotrla, M.; Prčík, M.; Pauková, Ž.; Kováčik, M.; Lošák, T. (2020). Phytoremediation potential of fast-growing energy plants: Challenges and perspectives – a review. Polish Journal of Environmental Studies, 29, 505‒516. http://doi.org/10.15244/pjoes/101621.

Kumar, V.; Kumar, P.; Singh, J.; Kumar, P. (2020). Potential of water fern (Azolla pinnata R.Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: Removal of physicochemical and heavy metal pollutants. International Journal of Phytoremediation, 22, 392‒403. http://doi.org/10.1080/15226514.2019.1667950.

Tang, K.H.D. (2023). Phytoremediation: Where do we go from here? Biocatalysis and Agricultural Biotechnology, 50, 102721. http://doi.org/10.1016/j.bcab.2023.102721.

Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. (2022). A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere, 291, 132979. http://doi.org/10.1016/j.chemosphere.2021.132979.

Tang, K.H.D. (2021). Phytoextraction of lead: Its feasibility, constraints and concerns. Asian Soil Research Journal, 5, 1‒9. http://doi.org/10.9734/asrj/2021/v5i430113.

Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203. http://doi.org/10.1016/j.envadv.2022.100203.

Liu, Z.; Tran, K.-Q. (2021). A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicology and Environmental Safety, 226, 112821. http://doi.org/10.1016/j.ecoenv.2021.112821.

Bhat, S.A.; Bashir, O.; UlHaq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788. http://doi.org/10.1016/j.chemosphere.2022.134788.

Matheson, S.; Fleck, R.; Irga, P.J.; Torpy, F.R. (2023). Phytoremediation for the indoor environment: A state-of-the-art review. Reviews in Environmental Science and Bio/Technology, 22, 249‒280. http://doi.org/10.1007/s11157-023-09644-5.

Steliga, T.; Kluk, D. (2020). Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicology and Environmental Safety, 194, 110409. http://doi.org/10.1016/j.ecoenv.2020.110409.

Rafique, H.M.; Khan, M.Y.; Asghar, H.N.; Ahmad Zahir, Z.; Nadeem, S.M.; Sohaib, M.; Alotaibi, F.; Al-Barakah, F.N.I. (2023). Converging alfalfa (Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase containing bacteria for phytoremediation of petroleum hydrocarbon contaminated soil. International Journal of Phytoremediation, 25, 717‒727. https://doi.org/10.1080/15226514.2022.2104214.

Ekperusi, A.O.; Nwachukwu, E.O.; Sikoki, F.D. (2020). Assessing and Modelling the Efficacy of Lemna paucicostata for the Phytoremediation of Petroleum Hydrocarbons in Crude Oil-Contaminated Wetlands. Scientific Reports, 10, 8489. https://doi.org/10.1038/s41598-020-65389-z.

Nero, B.F.(2021). Phytoremediation of petroleum hydrocarbon-contaminated soils with two plant species: Jatropha curcas and Vetiveria zizanioides at Ghana Manganese Company Ltd. International Journal of Phytoremediation, 23, 171‒180. https://doi.org/10.1080/15226514.2020.1803204.

Li, J.; Ma, N.; Hao, B.; Qin, F.; Zhang, X.(2023). Coupling biostimulation and phytoremediation for the restoration of petroleum hydrocarbon-contaminated soil. International Journal of Phytoremediation, 25, 706‒716. https://doi.org/10.1080/15226514.2022.2103511.

Hassani, A.; Nouri, J.; Mehregan, I.; Moattar, F.; Sadeghi Benis, M.(2015). Phytoremediation of soils contaminated with heavy metals resulting from acidic sludge of Eshtehard Industrial Town using native pasture plants. Journal of Environmental & Earth Science, 5, 87‒93.

Nugroho, A.P.; Butar, E.S.B.; Priantoro, E.A.; Sriwuryandari, L.; Pratiwi, Z.B.; Sembiring, T .(2021). Phytoremediation of electroplating wastewater by vetiver grass (Chrysopogon zizanoides L.). Scientific Reports, 11, 14482. https://doi.org/10.1038/s41598-021-93923-0.

Kristanti, R.A.; Mardarveran, P.; Almaary, K.S.; Elshikh, M.S.; Abdel Gawwad, M.R.; Tang, D.K.H. (2023). Phytoremediation of bauxite wastewater potentiality by Jatropa curcas. Bioprocess and Biosystems Engineering, 46, 373‒379. https://doi.org/10.1007/s00449-022-02745-5.

Nemati, B.; Baneshi, M.M.; Akbari, H.; Dehghani, R.; M ostafaii, G. (2024). Phytoremediation of pollutants in oil-contaminated soils by Alhagi camelorum: evaluation and modeling. Scientific Reports, 14, 5502. https://doi.org/10.1038/s41598-024-56214-y.

Heikal, Y.M. ; El-Esawi, M.A.; Naidu, R.; Elshamy, M.M. (2022). Eco-biochemical responses, phytoremediation potential and molecular genetic analysis of Alhagi maurorum grown in metal-contaminated soils. BMC Plant Biology, 22, 383. https://doi.org/10.1186/s12870-022-03768-6.

Ma, D.; Xu, J.; Zhou, J.; Ren, L.; Li, J.; Zhang, Z.; Xia, J.; Xie, H.; Wu, T. (2023). Using Sweet Sorghum Varieties for the Phytoremediation of Petroleum-Contaminated Salinized Soil: A Preliminary Study Based on Pot Experiments. Toxics, 11, 208. https://doi.org/10.3390/toxics11030208.

Hou, J.; Wang, Q.; Liu, W.; Zhong, D.; Ge, Y.; Christie, P.; Luo, Y. (2021). Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil. Science of The Total Environment, 792, 148411. https://doi.org/10.1016/j.scitotenv.2021.148411.

He, M.; Li, Z.; Chen, C.; Mei, P. (2022). Impact of soil types and root exudates on cadmium and petroleum hydrocarbon phytoremediation by Sorghum sudanense, Festuca arundinace, and Lolium perenne. Frontiers in Ecology and Evolution, 10, 1036765. https://doi.org/10.3389/fevo.2022.1036765.

Zhao, N.; Ju, F.; Song, Q.; Pan, H.; Ling, H. (2022). A simple empirical model for phenanthrene adsorption on soil clay minerals. Journal of Hazardous Materials, 429. https://doi.org/10.1016/j.jhazmat.2021.127849.

Hamidi, A.; Karimi, A.H. (2021). Effect of Phytoremediation on Compression Characteristics of Silty Clayey Sand Contaminated with Crude Oil. International Journal of Civil Engineering, 19, 973‒995. https://doi.org/10.1007/s40999-021-00609-9.

Ruley, J.A.; Tumuhairwe, J.B.; Amoding, A.; Westengen, O.T.; Vinje, H.(2020).Rhizobacteria Communities of Phytoremediation Plant Species in Petroleum Hydrocarbon Contaminated Soil of the Sudd Ecosystem, South Sudan. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/6639118.

Yousaf, U.; Ali Khan, A.H.; Farooqi, A.; Muhammad, Y.S.; Barros,R.; Tamayo-Ramos, J.A.; Iqbal, M.; Yousaf, S. (2022). Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil. Chemosphere, 286. https://doi.org/10.1016/j.chemosphere.2021.131782.

Vives-Peris, V.; de Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. (2020). Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports, 39, 3‒17. https://doi.org/10.1007/s00299-019-02447-5.

He, M.; Li,Z.; Mei, P. (2022). Root exudate glycine synergistically promotes phytoremediation of petroleum-contaminated soil. Frontiers in Environmental Science, 10, 621581. https://doi.org/10.3389/fenvs.2022.1033989.

Mostafa, A.A.; Hegazy, A.K.; Mohamed, N.H.; Hafez, R.M.; Azab, E.; Gobouri, A.A.; Saad, H.A.; Fattah, A.M.A.-E.; Mustafa, Y.M. (2021). Potentiality of Azolla pinnata R. Br. for Phytoremediation of Polluted Freshwater with Crude Petroleum Oil. Separations, 8. https://doi.org/10.3390/separations8040039.

M Ridha, M.J.; Faeq Ali, M.; Hussein Taly, A.; Abed, K.M.; Mohammed, S.J.; Muhamad, M.H.; Abu Hasan, H. (2022). Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics. Water, 14. https://doi.org/10.3390/w14050687.

Rabani, M.S.; Hameed, I.; Mir, T.A.; Wani, B.A.; Gupta, M.K.; Habib, A.; Jan, M.; Hussain, H.; Tripathi, S.; Pathak, A.; Ahad, M.B.; Gupta, C. (2022). Microbial-assisted phytoremediation. In Phytoremediation; Bhat, R.A., Tonelli, F.M.P., Dar, G.H., Hakeem, K., Eds.; Academic Press: New York, USA, pp. 91–114.

Guarino, C.; Marziano, M.; Tartaglia, M.; Prigioniero, A.; Postiglione, A.; Scarano, P.; Sciarrillo, R. (2020). Poaceae with PGPR bacteria and arbuscular mycorrhizae partnerships as a model system for plant microbiome manipulation for phytoremediation of petroleum hydrocarbons contaminated agricultural soils. Agronomy, 10(4), 547. https://doi.org/10.3390/agronomy10040547.

Wu, Y.; Cheng, Z.; Wu, C.; Zhao, H.; Bao, P.; Cui, X. (2023). Water conditions and arbuscular mycorrhizal symbiosis affect the phytoremediation of petroleum-contaminated soil by Phragmites australis. Environmental Technology & Innovation, 32, 103437. https://doi.org/10.1016/j.eti.2023.103437.

Li, X.; Wang, Y.; Li, N.; Su, Y. (2024). Enhancing the phytoremediation of petroleum-contaminated arid saline-alkali soil through irrigation-intercropping system combined with surfactants. Ecological Engineering, 203, 107245. https://doi.org/10.1016/j.ecoleng.2024.107245.

Gabriele, I.; Race, M.; Papirio, S.; Esposito, G. (2021). Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. Journal of Environmental Management, 293, 112805. https://doi.org/10.1016/j.jenvman.2021.112805.

Pacwa-Płociniczak, M.; Byrski, A.; Chlebek, D.; Prach, M.; Płociniczak, T. (2023). A deeper insight into the phytoremediation of soil polluted with petroleum hydrocarbons supported by the Enterobacter ludwigii ZCR5 strain. Applied Soil Ecology, 181, 104651. https://doi.org/10.1016/j.apsoil.2022.104651.

Morales-Guzmán, G.; Ferrera-Cerrato, R.; Rivera-Cruz, M.d.C.; Torres-Bustillos, L.G.; Mendoza-López, M.R.; Esquivel-Cote, R.; Alarcón, A. (2023). Phytoremediation of soil contaminated with weathered petroleum hydrocarbons by applying mineral fertilization, an anionic surfactant, or hydrocarbonoclastic bacteria. International Journal of Phytoremediation, 25(3), 329–338. https://doi.org/10.1080/15226514.2022.2083577.

Yang, K.M.; Poolpak, T.; Pokethitiyook, P.; Kruatrachue, M. (2022). Assessment of dynamic microbial community structure and rhizosphere interactions during bioaugmented phytoremediation of petroleum-contaminated soil by a newly designed rhizobox system. International Journal of Phytoremediation, 24(14), 1505–1517. https://doi.org/10.1080/15226514.2022.2040420.

Ptaszek, N.; Pacwa-Płociniczak, M.; Noszczyńska, M.; Płociniczak, T. (2020). Comparative study on multiway enhanced bio- and phytoremediation of aged petroleum-contaminated soil. Agronomy, 10(7), 947. https://doi.org/10.3390/agronomy10070947.

Wang, A.; Fu, W.; Feng, Y.; Liu, Z.; Song, D. (2022). Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. Journal of Hazardous Materials, 429, 128396. https://doi.org/10.1016/j.jhazmat.2022.128396.

Wojtowicz, K.; Steliga, T.; Kapusta, P. (2023). Evaluation of the effectiveness of bioaugmentation-assisted phytoremediation of soils contaminated with petroleum hydrocarbons using Echinacea purpurea. Applied Sciences, 13(24). https://doi.org/10.3390/app132413077.

Ali, M.H.; Muzaffar, A.; Khan, M.I.; Farooq, Q.; Tanvir, M.A.; Dawood, M.; Hussain, M.I. (2024). Microbes-assisted phytoremediation of lead and petroleum hydrocarbons contaminated water by water hyacinth. International Journal of Phytoremediation, 26(3), 405–415. https://doi.org/10.1080/15226514.2023.2245905.

Tang, K.H.D. (2023). Phytoremediation of microplastics: A perspective on its practicality. Industrial and Domestic Waste Management, 3(2), 90–102. https://doi.org/10.53623/idwm.v3i2.291.

Tang, K.H.D. (2023). Phytoremediation of perfluorochemicals: A review of its advances, feasibility and limitations. Environmental and Toxicology Management, 3(1), 1–7. https://doi.org/10.33086/etm.v3i1.372.

Macci, C.; Doni, S.; Peruzzi, E.; Bardella, S.; Filippis, G.; Ceccanti, B.; Masciandaro, G. (2013). A real-scale soil phytoremediation. Biodegradation, 24(4), 521–538. https://doi.org/10.1007/s10532-012-9608-z.

About this article

SUBMITTED: 01 November 2024
ACCEPTED: 05 December 2024
PUBLISHED: 9 December 2024
SUBMITTED to ACCEPTED: 34 days
DOI: https://doi.org/10.53623/tebt.v2i2.532

Cite this article
Tang, K. H. D. (2024). Phytoremediation of Petroleum Hydrocarbons: An Update of Its Recent Progress. Tropical Environment, Biology, and Technology, 2(2), 106‒123. https://doi.org/10.53623/tebt.v2i2.532
Keywords
Accessed
134
Citations
0
Share this article