Skip to main content

Groundwater Contamination by Heavy Metals in Malaysia: Sources, Transport, and Remediation Strategies

Author(s): Wei Lin Wong 1 , Mehmet Emre 2 , Gaurav Talukdar 3
Author(s) information:
1 KESPRO Consultants Sdn Bhd, No. A-07-09, Level 7, Block A, Sunway Geo Avenue, Jalan Lagoon Selatan Sunway South Quay, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
2 Faculty of Science, Dicle University, Diyarbakır, Turkey
3 Kansas Geological Survey, University of Kansas Lawrence, Kansas, 66045, USA

Corresponding author

Groundwater contamination by heavy metals is a pressing environmental concern, particularly in regions highly dependent on groundwater as a freshwater source. While Malaysia primarily relies on river water, certain states and islands depend on groundwater for their supply. Research on heavy metal contamination in Malaysia’s groundwater remains limited, making it crucial to study the distribution and mobility of contaminants to develop appropriate remediation strategies. In addition to natural sources, anthropogenic activities such as landfills, mining, and the use of fertilizers contribute significantly to heavy metal pollution in groundwater. Factors like rainfall, fluctuating groundwater levels, and low soil pH can exacerbate heavy metal leaching into aquifers. Various models and techniques, including 2D resistivity imaging and MODFLOW, are used to assess groundwater flow and contaminant transport. These models suggest that contaminant concentrations decrease with increased depth and radial distance from pollution sources such as landfills and mining areas. The health risks associated with heavy metal exposure through groundwater consumption are significant, necessitating effective remediation strategies. Phytoremediation is an economical solution for groundwater containing low concentrations of heavy metals, while permeable reactive barriers may be suitable for more complex cases, pending detailed site investigation. This review aims to examine the current state of knowledge on heavy metal contamination in Malaysia’s groundwater, focusing on sources, distribution patterns, and movement of pollutants. It also seeks to evaluate existing remediation methods, including phytoremediation and permeable reactive barriers, while identifying gaps in research, particularly concerning risk assessments and heavy metal speciation.

Previous article

Yazdi, S.H.; Vosoogh, A. (2019). Mini Review on Heavy Metals in Groundwater; Pollution and Removal. Journal of Biochemical Technology, 10(2), 149‒164.

Kura, N.U.; Ramli, M.F.; Sulaiman, W.N.A.; Ibrahim, S.; Aris, A.Z. (2018). An overview of groundwater chemistry studies in Malaysia. Environmental Science and Pollution Research, 25, 7231‒7249. https://doi.org/10.1007/s11356-015-5957-6.

Talabi, A.O.; Kayode, T.J. (2019). Groundwater Pollution and Remediation. Journal of Water Resource and Protection, 11, 1‒19. https://doi.org/10.4236/jwarp.2019.111001.

Hussein, M.; Yoneda, K.; Mohd-Zaki, Z.; Amir, A.; Othman, N. (2021). Heavy metals in leachate, impacted soils and natural soils of different landfills in Malaysia: An alarming threat. Chemosphere, 267, 128874. https://doi.org/10.1016/j.chemosphere.2020.128874.

Kamaruddin, M.A.; Yusoff, M.S.; Lo, M.R.; Isa, A.M.; Zawawi, M.H.; Alrozi, R. (2017). An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environmental Science and Pollution Research, 24, 26988‒27020. https://doi.org/10.1007/s11356-017-0303-9.

Mukherjee, S.; Mukhopadhyay, S.; Hashim, M.A.; Gupta, B.S. (2015). Contemporary environmental issues of landfill leachate: assessment & remedies. Critical Reviews in Environmental Science and Technology, 45(5), 472‒590. http://doi.org/10.1080/10643389.2013.876524.

Ugya, A.Y.; Ajibade, F.O.; Ajibade, T.F. (2018). Water pollution resulting from mining activity: An overview. Proceedings of the 2018 Annual Conference of the School of Engineering & Engineering Technology (SEET), 3.

Khan, M.N.; Mobin, M.; Abbas, Z.K.; Alamri, S.A. (2018). Fertilizers and Their Contaminants in Soils, Surface and Groundwater. Encyclopedia of the Anthropocene, 5, 225‒240. https://doi.org/10.1016/B978-0-12-809665-9.09888-8.

Campanale, C.; Losacco, D.; Triozzi, M.; Massarelli, C.; Uricchio, V.F. (2022). An Overall Perspective for the Study of Emerging Contaminants in Karst Aquifers. Resources, 11, 105. https://doi.org/10.3390/resources11110105.

Sharma, P.K.; Mayank, M.; Ojha, C.S.P.; Shukla, S.K. (2020). A review on groundwater contaminant transport and remediation. ISH Journal of Hydraulic Engineering, 26(1), 112‒121. https://doi.org/10.1080/09715010.2018.14382134.

Yusoff, I.; Alias, Y.; Yusof, M.; Ashraf, M.A. (2013). Assessment of pollutants migration at Ampar Tenang landfill site, Selangor, Malaysia. ScienceAsia, 39, 392‒402. https://doi.org/10.2306/scienceasia1513-1874.2013.39.392.

Ashraf, M.A.; Yusoff, I.; Yusof, M.; Alias, Y. (2013). Study of contaminant transport at an open-tipping waste disposal site. Environmental Science and Pollution Research, 20, 4689‒4710. https://doi.org/10.1007/s11356-012-1423-x.

Li, J.; Dong, X.; Liu, X.; Xu, X.; Duan, W.; Park, J.; Gao, L.; Lu, Y. (2022). Comparative Study on the Adsorption Characteristics of Heavy Metal Ions by Activated Carbon and Selected Natural Adsorbents. Sustainability, 14, 15579. https://doi.org/10.3390/su142315579

Ibrahim, M.F.; Hod, R.; Toha, H.R.; Mohammed Nawi, A.; Idris, I.B.; Mohd Yusoff, H.; Sahani, M. (2021). The Impacts of Illegal Toxic Waste Dumping on Children’s Health: A Review and Case Study from Pasir Gudang, Malaysia. International Journal of Environmental Research and Public Health, 18, 2221. https://doi.org/10.3390/ijerph18052221.

Ravindra, K.; Mor, S. (2019). Distribution and health risk assessment of arsenic and selected heavy metals in Groundwater of Chandigarh, India. Environmental Pollution, 250, 820‒830. https://doi.org/10.1016/j.envpol.2019.03.080.

Rahim, B.E.A.; Yusoff, L.; Abdul Rahim, S.; Wan Zuhairi, W.Y.; Abdul Ghani, M.R. (2011). Tracing subsurface migration of contaminants from an abandoned municipal landfill. Environmental Earth Sciences, 63, 1043‒1055. https://doi.org/10.1007/s12665-010-0780-3.

Barry, A.A.; Yameogo, S.; Ayach, M.; Jabrane, M.; Tiouiouine, A.; Nakolendousse, S.; Lazar, H.; Filki, A.; Touzani, M.; Mohsine, I. (2021). Mapping Contaminant Plume at a Landfill in a Crystalline Basement Terrain in Ouagadougou, Burkina Faso, Using Self-Potential Geophysical Technique. Water, 13, 1212. https://doi.org/10.3390/w13091212.

Hamzah, U.; Jeeva, M.; Ali, N.A.M. (2014). Electrical Resistivity Techniques and Chemical Analysis in the Study of Leachate Migration at Sungai Sedu Landfill. Asian Journal of Applied Sciences, 7(7), 518‒535. https://doi.org/10.3923/ajaps.2014.518.535.

Wang, F.; Song, K.; He, X.; Peng, Y.; Liu, D.; Liu, J. (2021). Identification of Groundwater Pollution Characteristics and Health Risk Assessment of a Landfill in a Low Permeability Area. International Journal of Environmental Research and Public Health, 18, 7690. https://doi.org/10.3390/ijerph18147690.

Saghravani, S.R.; Mustapha, S.; Ibrahim, S.; Yusoff, M.K.; Saghravani, S.F. (2011). Phosphorus migration in an unconfined aquifer using MODFLOW and MT3DMS. Journal of Environmental Engineering and Landscape Management, 19(4), 271‒277. https://doi.org/10.3846/16486897.2011.634053.

Karatzas, G.P. (2017). Developments on Modeling of Groundwater Flow and Contaminant Transport. Water Resources Management, 31, 3235‒3244. https://doi.org/10.1007/s11269-017-1729-z.

Atta, M.; Yaacob, W.Z.W.; Jaafar, O.B. (2015). Steady State Groundwater Flow Modeling of an Ex-Landfill Site in Kuala Lumpur, Malaysia. American Journal of Environmental Sciences, 11(5), 348‒357. https://doi.org/10.3844/ajessp.2015.348.357.

Tantemsapya, N.; Naksakul, Y.; Wirojanagud, P. (2011). Mathematical modeling of heavy metals contamination from MSW landfill site in Khon Kaen, Thailand. Water Science and Technology, 64(9), 1835‒1842. https://doi.org/10.2166/wst.2011.751.

Xie, W.; Ren, B.; Hursthouse, A.S.; Wang, Z.; Luo, X. (2021). Simulation of Manganese Transport in Groundwater Using Visual MODFLOW: A Case Study from Xiangtan Manganese Ore Area in Central China. Polish Journal of Environmental Studies, 30(2), 1409‒1420. https://doi.org/10.15244/pjoes/125766.

Ebrahim, M.Z.; Man, H.C.; Zawawi, M.A.M.; Hamzah, M.H. (2019). Prediction of Groundwater Contaminants from Cattle Farm using Visual MODFLOW. Pertanika Journal of Science & Technology, 27(4), 2265‒2279.

Ali, H.; Khan, E.; Ilahi, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019, 6730305. https://doi.org/10.1155/2019/6730305.

Wuana, R.A.; Okieimen, F.E. (2011). Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Network, 2011, 402647. https://doi.org/10.5402/2011/402647.

Ravindiran, G.; Rajamanickam, S.; Sivarethinamohan, S.; Karupaiya Sathaiah, B.; Ravindran, G.; Muniasamy, S.K.; Hayder, G. (2023). A Review of the Status, Effects, Prevention, and Remediation of Groundwater Contamination for Sustainable Environment. Water, 15, 3662. https://doi.org/10.3390/w15203662.

Sankhla, M.S.; Kumar, R. (2019). Contaminant of Heavy Metals in Groundwater & its Toxic Effects on Human Health & Environment. International Journal of Environmental Sciences & Natural Resources, 18(5), 555996. https://doi.org/10.19080/IJESNR.2019.18.555996.

Izah, S.C.; Chakrabarty, N.; Srivastav, A.L. (2016). A Review on Heavy Metal Concentration in Potable Water Sources in Nigeria: Human Health Effects and Mitigating Measures. Expo Health, 8, 285‒304. https://doi.org/10.1007/s12403-016-0195-9.

Adeloju, S.B.; Khan, S.; Patti, A.F. (2021). Arsenic contamination of groundwater and its implications for drinking water quality and human health in under-developed countries and remote communities—A review. Applied Sciences, 11(4). https://doi.org/10.3390/app11041926.

The, T.; Nik Norulaini, N.A.R.; Shahadat, M.; Wong, Y.; Mohd Omar, A.K. (2016). Risk Assessment of Metal Contamination in Soil and Groundwater in Asia: A Review of Recent Trends as well as Existing Environmental Laws and Regulations. Pedosphere, 26(4), 431‒450. https://doi.org/10.1016/S1002-0160(15)60055-8.

Kumar, M.; Gogoi, A.; Kumari, D.; Borah, R.; Das, P.; Mazumder, P.; Tyagi, V.K. (2017). Review of Perspective, Problems, Challenges, and Future Scenario of Metal Contamination in the Urban Environment. Journal of Hazardous, Toxic, and Radioactive Waste, 21(4). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000351.

Hashim, M.A.; Mukhopadhyay, S.; Sahu, J.N.; Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environment Management, 92(10), 2355‒2388. https://doi.org/10.1016/j.jenvman.2011.06.009.

Staszak, K.; Regel-Rosocka, M. (2024). Removing Heavy Metals: Cutting-Edge Strategies and Advancements in Biosorption Technology. Materials, 17, 1155. https://doi.org/10.3390/ma17051155.

Caliman, F.A.; Robu, B.M.; Smaranda, C.; Pavel, V.L.; Gavrilescu, M. (2011). Soil and groundwater cleanup: Benefits and limits of emerging technologies. Clean Technologies and Environmental Policy, 13, 241‒268. https://doi.org/10.1007/s10098-010-0319-z.

Alshawabkeh, A.N. (2009). Electrokinetic Soil Remediation: Challenges and Opportunities. Separation Science and Technology, 44, 2171-2187. https://doi.org/10.1080/01496390902976681.

Tangahu, B.V.; Abdullah, S.R.S.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. (2011). A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, 2011, 939161. https://doi.org/10.1155/2011/939161.

Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavas, I.; Unay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. (2020). Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability, 12(5). https://doi.org/10.3390/su12051927.

Awa, S.H.; Hadibarata, T. (2020). Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water, Air, & Soil Pollution, 237(41). https://doi.org/10.1007/s11270-020-4426-0.

Faisal, A.A.H.; Sulaymon, A.H.; Khaliefa, O.M. (2018). A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. International Journal of Environmental Science and Technology, 15, 1123‒1138. https://doi.org/10.1007/s13762-017-1466-0.

Striegel, J.; Sanders, D.A.; Veenstra, J.N. (2001). Treatment of Contaminated Groundwater Using Permeable Reactive Barriers. Environmental Geosciences, 8(4), 258-265. https://doi.org/10.1046/j.1526-0984.2001.84004.x.

Madzin, Z.M.; Mohd Kusin, F.; Md Zahar, M.S.; Muhammad, S.N. (2016). Passive In Situ Remediation Using Permeable Reactive Barrier for Groundwater Treatment. Pertanika Journal of Scholarly Research Reviews, 2(2), 1‒11.

Obiri-Nyarko, F.; Grajales-Mesa, S.J.; Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243‒259. https://doi.org/10.1016/j.chemosphere.2014.03.112.

Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Lafleche, M. (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1‒31. https://doi.org/10.1016/j.jhazmat.2007.10.043.

About this article

SUBMITTED: 05 September 2024
ACCEPTED: 14 October 2024
PUBLISHED: 20 October 2024
SUBMITTED to ACCEPTED: 39 days
DOI: https://doi.org/10.53623/tebt.v2i2.492

Cite this article
Wong, W. L. ., Emre, M., & Talukdar, G. . (2024). Groundwater Contamination by Heavy Metals in Malaysia: Sources, Transport, and Remediation Strategies. Tropical Environment, Biology, and Technology, 2(2), 93–105. https://doi.org/10.53623/tebt.v2i2.492
Keywords
Accessed
304
Citations
0
Share this article