Skip to main content

Utilization of Aquatic Plants and Microalgae for Sustainable Aquaculture Production and Potential Biotechnological Applications

Author(s): Job Ombiro Omweno 1 , 2 , , Omondi Argwings 2 , 3 , , Berrick Moturi Sieberi 1 , Merceline Angima 2 , Peter Maangi Ondieki 4
Author(s) information:
1 Department of Agriculture, Fisheries, Livestock Development, Cooperative Development and Irrigation, County Government of Kisii, Kisii, Kenya. PO Box 700 - 40200, Kisii Kenya
2 Department of Environment, Natural Resources and Aquatic Sciences, Kisii University, Kisii, Kenya. PO Box 408 - 40200, Kisii, Kenya
3 Department of Agriculture and Environmental Science, Sigalagala National Polytechnic, Kakamega, Kenya
4 Kenya Marine and Fisheries Research Institute, Kegati Aquaculture Centre. PO Box 3259 - 40200, Kisii, Kenya.

Corresponding author

Locally available feedstuffs, such as grain seed cakes, oilseeds, and vegetable waste, hold immense potential as alternative feed sources in fish farming. However, these plant-based ingredients have low crude protein content and lack essential fatty acids, which lowers palatability and feed conversion efficiencies, leading to suboptimal fish growth. Traditional feedstuffs like fishmeal and soybean meal face sustainability challenges such as local unavailability, the presence of anti-nutritional factors, and energy-intensive processing. The rising costs of commercial aqua-feeds and feed scarcity necessitate exploring alternative fish feed options. Aquatic plants like Ipomoea aquatica, Lemna minor,  and Azolla pinnata,  along with green and blue-green microalgae such as Chlorella spp. and Arthrospira spp. (Spirulina), are promising alternatives due to their high protein content, availability of essential omega-3 fatty acids such as EPA (Eicosapentaenoic acid) and DHA (Docosahexaenoic acid), and beneficial bioactive compounds. These plants and microalgae, with crude protein content ranging from 25% to 65%, can significantly enhance fish growth, health, and product quality by partially or entirely replacing fishmeal. Their nitrogen-fixing abilities contribute to their high protein levels. Additionally, these organisms have various biotechnological applications, including phytoremediation, Integrated Multi-trophic Aquaculture (IMTA), aquaponics, biofloc technology, and constructed wetlands. Despite their potential, challenges in scaling up and integrating these alternatives into existing systems remain. Collaborative efforts and advocacy among farmer groups are crucial for knowledge sharing and fostering sustainable biotechnological solutions. Long-term strategies should focus on upscaling local feed production and research and development to achieve self-sufficiency and cost-effective natural feed production systems in fish farming.

Omweno, J.O.; Getabu, A.; Omondi, R.; Orina, P. S. (2022). Water Quality Effects on Growth and Survival of Oreochromis jipe and Oreochromis niloticus Species in Aquaculture. In S. Dincer, H. A. M. Takci, & M. S. Ozdenefe (Eds.), Water Quality - New Perspectives [Working Title]. IntechOpen. https://doi.org/10.5772/intechopen.106361.

Opiyo, M. A.; Getabu, A. (2016). Challenges and opportunities for intensification of fish production in Kenya. Aquaculture Research & Development, 7(2), 1‒6. https://doi.org/10.4172/2155-9546.1000375.

Omweno, J.O.; Omondi, A. (2024). Recent Developments in Fish Nutrition and Culture Technologies in Kenya. IntechOpen. https://doi.org/10.5772/intechopen.112192.

Omondi, A.; Ogendi, G.; Onchienku, J.; Omondi, S.; Omondi, R. (2022). Temporal Variation of Physical and Chemical Characteristics of Water in Selected Locations in Lake Naivasha, Kenya. Pan Africa Science Journal, 2(02). https://doi.org/10.47787/pasj.v2i2.19.

Opiyo, M.A.; Getabu, A. (2014). Environmental sustainability of fish farming enterprises in Kenya: A review. Journal of Fisheries and Aquatic Science, 9(1), 1‒10. https://doi.org/10.3923/jfas.2014.1.10.

Njiru, M.; Nyamweya, C.; Gichuki, J.; Mugidde, R.; Mkumbo, O.; Witte, F. (2012). Increase in anoxia in Lake Victoria and its effects on the fishery. InTechOpen. https://doi.org/10.5772/27461.

Agwanda, P.O.; Iqbal, M.M. (2019). Engineering control of eutrophication: Potential impact assessment of wastewater treatment plants around Winam Gulf of Lake Victoria in Kenya. Journal of Coastal Research, 91(SI), 221‒225.

Pueppke, S.G.; Nurtazin, S.; Ou, W. (2020). Water and land as shared resources for agriculture and aquaculture: Insights from Asia. Water, 12(10), 2787. https://doi.org/10.3390/w12102787.

Fish as feed inputs for aquaculture: practices, sustainability, and implications. accessed on 1 January 2024) Available online: https://www.fao.org/4/i1140e/i1140e.pdf.

Daniel, M.; Argwings, O.; Omweno, J. O.; Outa, N.O.; Munguti, J.M. (2023) Current Fish Feed Status and Development of New Feeding Technologies for Aquaculture Growth and Development in Kenya: Rapid Review. Journal of Aquatic Fisheries, 7, 61.

Kumari, P.; Maiti, S.K. (2020). Metal (loid) contamination in water, sediment, epilithic periphyton and fish in three interconnected ecosystems and health risk assessment through intake of fish cooked in Indian style. Environmental Science and Pollution Research, 27(33), 41914‒41927. https://doi.org/10.1007/s11356-020-10023-8.

Kumari, P.; Hansdah, P. (2023). Sources and toxicological effects of metal and metalloids on human health through fish consumption in mineral-rich city, Ranchi, India. Environmental Monitoring and Assessment, 195(9), 1032. https://doi.org/10.1007/s10661-023-11639-2.

Kumari, P.; Raj, D. (2024). Microplastics in Indian aquatic systems and its effects on plants, aquatic organisms and humans, and its methods of remediation. Chemistry and Ecology, 40(2), 136‒165. https://doi.org/10.1080/02757540.2023.2297714.

The State of World Fisheries and Aquaculture 2018 - Meeting the Sustainable Development Goals. (accessed on 1 January 2024) Available online: http://www.fao.org/3/i9540en/I9540EN.pdf

Omweno, J. O.; Omondi, R.; Ondemo, F. M.; Omondi, A. (2024). The Impacts of Introduced Fish and Aquatic Macrophytes on the Ecology and Fishery Potential of Lake Victoria, Kenya. IntechOpen. https://doi.org/10.5772/intechopen.112388.

The state of world fisheries and aquaculture. 2006. (accessed on 1 January 2024) Available online: https://policycommons.net/artifacts/9773700/the-state-of-world-fisheries-and-aquaculture/10667678/.

The role of aquaculture in rural development. (accessed on 1 January 2024) Available online: https://indigenousfisheriestrainingframework.wordpress.com/wp-content/uploads/2015/06/halwart-et-al-rural-dev-and-aqua.pdf.

FAO Fisheries and Aquaculture Report No. 1079 RNE/R1079. (accessed on 1 January 2024) Available online: https://openurl.ebsco.com/EPDB%3Agcd%3A15%3A25478831/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A119061240&crl=c.

Pueppke, S.G.; Nurtazin, S.; Ou, W. (2020). Water and land as shared resources for agriculture and aquaculture: Insights from Asia. Water, 12(10), 2787. https://doi.org/10.3390/w12102787.

Azolla: A Review of Its Potential as a Feed for Animals, Especially Fish. accessed on 1 January 2024) Available online: http://www.fao.org/3/y4769e/y4769e0a.htm

Becker, E.W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207‒210. https://doi.org/10.1016/j.biotechadv.2006.11.002.

Kulshreshtha, A.; Zacharia, A.J.; Jarouliya, U.; Bhadauriya, P.; Prasad, G.B.K.S. (2008). Spirulina in health care management. Current Pharmaceutical Biotechnology, 9(5), 400‒405. https://doi.org/10.2174/138920108785915111.

Lumpkin, T.A.; Plucknett, D.L. (1980). Azolla: botany, physiology, and use as a green manure. Economic Botany, 34, 111‒153. https://doi.org/10.1007/BF02858627.

Remirez, D.; Gonzalez, R.; Merino, N.; Rodriguez, S.; Ancheta, O.; Iniguez, M. (2002). Spirulina maxima prevents induction of fatty liver by carbon tetrachloride in the rat. IUBMB Life, 44, 787‒793. https://doi.org/10.1080/15216549800201832.

Refaey, M.M.; Mehrim, A.I.; Zenhom, O.A.; Areda, H.A.; Ragaza, J.A.; Hassaan, M.S. (2023). Fresh Azolla, Azolla pinnata as a complementary feed for Oreochromis niloticus: growth, digestive enzymes, intestinal morphology, physiological responses, and flesh quality. Aquaculture Nutrition, 2023(1), 1403704. https://doi.org/10.1155/2023/1403704.

Mosha, S.S. (2018). A review on significance of Azolla meal as a protein plant source in finfish culture. Journal of Aquaculture Research and Development, 9(7), 544. http://doi.org/10.4172/2155-9546.1000544.

Spirulina: A Review of Its Nutritional and Therapeutic Potential. (accessed on 1 January 2024) Available online: http://www.fao.org/3/a-i0394e.pdf.

Mosibo, O.K.; Ferrentino, G.; Udenigwe, C.C. (2024). Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods, 13, 733. https://doi.org/10.3390/foods13050733.

Zhou, Y.; Borisjuk, N. (2019). Small aquatic duckweed plants with big potential for the production of valuable biomass and wastewater remediation. International Journal of Environmental Science & Natural Resources, 16, 555942. http://doi.org/10.19080/IJESNR.2019.16.555942.

Belay, A. (2002). The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. Journal of the American Nutraceutical Association, 5(2), 27‒48.

Microalgae in novel food products. (accessed on 1 January 2024) Available online: https://www.repository.utl.pt/handle/10400.5/2434.

Giri, S.S.; Sukumaran, V.; Oviya, M. (2013). Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish & Shellfish Immunology, 34(2), 660‒666. https://doi.org/10.1016/j.fsi.2012.12.008.

Azolla: A Sustainable Feed Source for Aquaculture. (accessed on 1 January 2024) Available online: https://www.worldfishcenter.org/content/azolla-sustainable-feed-source-aquaculture.

Mimouni, V.; Ulmann, L.; Pasquet, V.; Mathieu, M.; Picot, L.; Bougaran, G.; Schoefs, B. (2012). The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Current Pharmaceutical Biotechnology, 13(15), 2733‒2750. https://doi.org/10.2174/138920112804724828.

Valenzuela, H. (2023). Ecological management of the nitrogen cycle in organic farms. Nitrogen, 4(1), 58‒84. https://doi.org/10.3390/nitrogen4010006.

Stratev, D.; Odeyemi, O.A. (2017). An overview of motile Aeromonas septicaemia management. Aquaculture international, 25(3), 1095-1105. https://doi.org/10.1007/s10499-016-0100-3.

Spirulina: A Promising Microalga for Sustainable Aquaculture. (accessed on 1 January 2024) Available online: https://www.worldfishcenter.org/content/spirulina-promising-microalga-sustainable-aquaculture

Baek, G.; Saeed, M.; Choi, H.K. (2021). Duckweeds: their utilization, metabolites and cultivation. Applied Biology and Chemistry, 64, 73. https://doi.org/10.1186/s13765-021-00644-z.

Ullah, H.; Gul, B.; Khan, H.; et al. (2022). Effect of growth medium nitrogen and phosphorus on nutritional composition of Lemna minor (an alternative fish and poultry feed). BMC Plant Biology, 22, 214. https://doi.org/10.1186/s12870-022-03600-1.

Khwankaew, J.; Nguyen, D.T.; Kagawa, N.; Takagaki, M.; Maharjan, G.; Lu, N. (2018). Growth and nutrient level of water spinach (Ipomoea aquatica Forssk.) in response to LED light quality in a plant factory. Acta Horticultura, 1227, 653‒660. https://doi.org/10.17660/ActaHortic.2018.1227.83.

Mariani, R.; Perdana, F.; Fadhlillah, F.M.; Qowiyyah, A.; Triyana, H. (2019). Antioxidant activity of Indonesian water spinach and land spinach (Ipomoea aquatica): A comparative study. Journal of Physics: Conference Series, 1402, 5091. https://doi.org/10.1088/1742-6596/1402/5/055091.

Said, D.S.; Chrismadha, T.; Mardiati, Y.; Mayasari, N. (2023). Nutritional content and growth ability of aquatic plant Azolla pinnata on wastewater of catfish. IOP Conference Serries: Earth and Environmental Science, 1260, 012012. https://doi.org/10.1088/1755-1315/1260/1/012012.

Moneera, O.; Aljobair, N.A.; Albaridi, A.N.; Alkuraieef, Nora. (2021) Physicochemical properties, nutritional value, and sensory attributes of a nectar developed using date palm puree and spirulina, International Journal of Food Properties, 24, 845‒858, https://doi.org/10.1080/10942912.2021.1938604.

Pagliuso, D.; Grandis, A.; Fortirer, J.S.; Camargo, P.; Floh, E.I.S.; Buckeridge, M.S. (2022). Duckweeds as Promising Food Feedstocks Globally. Agronomy, 12, 796. https://doi.org/10.3390agronomy12040796.

Saikia, K.; Dey, S.; Hazarika, S.N.; Handique, G.K.; Thakur, D.; Handique, A.K. (2023). Chemical and biochemical characterization of Ipomoea aquatica: genoprotective potential and inhibitory mechanism of its phytochemicals against α-amylase and α-glucosidase. Frontiers in Nutrition, 10, 1304903. https://doi.org/10.3389/fnut.2023.1304903.

Solomon, J.R.; Ezigbo, M.N. (2010). Polyculture of heteroclarias/tilapia under different feeding regimes. New York Science Journal, 3(10), 42‒57.

Tidwell, J. H.; Allan, G. L. (2001). Fish as food: aquaculture's contribution. Ecological and economic impacts and contributions of fish farming and capture fisheries. EMBO Reports, 2(11), 958‒963. https://doi.org/10.1093/embo-reports/kve236.

Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Speranza, L.G. (2022). Algae as food in Europe: An overview of species diversity and their application. Foods, 11(13), 1871. https://doi.org/10.3390/foods11131871.

Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.; Clay, J., Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017‒1024. https://doi.org/10.1038/35016500.

Azim, M. E.; Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1‒4), 29‒35. https://doi.org/10.1016/j.aquaculture.2008.06.036.

Leng, R. A.; Stambolie, J. H.; Bell, R. (1995). Duckweed-a potential high-protein feed resource for domestic animals and fish. Livestock Research for Rural Development, 7(1), 36.

Alalade, O.A.; Iyayi, E.A. (2006). Chemical composition and the feeding value of Azolla (Azolla pinnata) meal for egg-type chicks. International Journal of Poultry Science, 5(2), 137‒141.

Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Neefus, C. (2001). Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology, 37(6), 975‒986. https://doi.org/10.1046/j.1529-8817.2001.01137.x.

Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G P.; Halling, C.; Yarish, C. (2004). Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231(1‒4), 361‒391. https://doi.org/10.1016/j.aquaculture.2003.11.015.

Schneider, O.; Sereti, V.; Eding, E.H.; Verreth, J. A. (2005). Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering, 32(3‒4), 379‒401. https://doi.org/10.1016/j.aquaeng.2004.09.001.

Rakocy, J.E.; Masser, M.P.; Losordo, T.M. (2006). Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. SRAC publication, 454, 1‒16.

Endut, A.; Jusoh, A.; Ali, N.; Wan Nik, W. B.; Hassan, A. (2010). A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource Technology, 101(5), 1511‒1517. https://doi.org/10.1016/j.biortech.2009.09.040.

Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K. V.; Jijakli, H., Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7(4), 4199‒4224. https://doi.org/10.3390/su7044199.

Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227‒235. https://doi.org/10.1016/S0044-8486(99)00085-X.

Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, 351‒356. https://doi.org/10.1016/j.aquaculture.2012.04.046.

Emerenciano, M.G.; Gaxiola, G.; Cuzon, G. (2013). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In Biomass now-cultivation and utilization. Intech Open. https://doi.org/10.5772/53902.

Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science & Technology, 45(1), 61‒69. https://doi.org/10.1021/es101403q.

Brix, H. (1994). Functions of macrophytes in constructed wetlands. Water Science and Technology, 29(4), 71‒78. https://doi.org/10.2166/wst.1994.0160.

Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3), 530‒549. https://doi.org/10.3390/w2030530.

Borowitzka, M.A. (2013). High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25(3), 743‒756. https://doi.org/10.1007/s10811-013-9983-9.

Tacon, A.G.J.; Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285, 146‒158. https://doi.org/10.1016/j.aquaculture.2008.08.015.

Munguti, J.M.; Musa, S.; Orina, P.S.; Kyule, D.N.; Opiyo, M.A.; Charo-Karisa, H.; Ogello, E.O. (2014). An overview of current status of Kenyan fish feed industry and feed management practices, challenges and opportunities. International Journal of Fisheries and Aquatic Studies, 1, 128-137.

Hossain, M.M.; Rahman, M.H.; Tina, F.W.; Shahjahan, M. (2024). Present scenario and prospects of the use of aquatic plants in aquaculture: a review. Aquaculture International. https://doi.org/10.1007/s10499-024-01489-1.

Uzoejinwa, B.B.; Asoiro, F.U. (2023). Algae Harvesting. In Value-added Products from Algae: Phycochemical Production and Applications; Abomohra, A., Ende, S., Eds.; Springer International Publishing: Cham, Switzerland, pp. 43‒69. https://link.springer.com/chapter/10.1007/978-3-031-42026-9_3.

Niu, J.; Xie, S.W.; Fang, H.H.; Xie, J.J.; Guo, T.Y.; Zhang, Y.M.; Liu, Y.J. (2018). Dietary values of macroalgae Porphyra haitanensis in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: Effect on growth, immune response and intestinal microbiota. Fish & Shellfish Immunology, 81, 135‒149. https://doi.org/10.1016/j.fsi.2018.06.010.

Sagaram, U.S.; Gaikwad, M.S.; Nandru, R.; Dasgupta, S. (2021). Microalgae as feed ingredients: recent developments on their role in immunomodulation and gut microbiota of aquaculture species. FEMS Microbiology Letters, 368(11), fnab071. https://doi.org/10.1093/femsle/fnab071.

Vijayaram, S.; Ringø, E.; Ghafarifarsani, H.; Hoseinifar, S.H.; Ahani, S.; Chou, C. (2024). Use of Algae in Aquaculture: A Review. Fishes, 9, 63. https://doi.org/10.3390/fishes9020063.

Ozbay, G.; Blank, G.; Thunjai, T. (2014). Impacts of Aquaculture on Habitats and Best Management Practices (BMPs). InTech. https://doi.org/10.5772/57471.

Benjamin, E.O.; Buchenrieder, G.R.; Sauer, J. (2021). Economics of small-scale aquaponics system in West Africa: A SANFU case study. Aquaculture Economics & Management, 25(1), 53‒69. https://doi.org/10.1080/13657305.2020.1793823.

Promising Aquaculture Technologies and Innovations for Transforming Food Systems toward Low Emission Pathways in Kenya: A Review. (accessed on 1 June 2024) Available online: https://cgspace.cgiar.org/items/b0163be0-3248-4b40-bd16-92682a3c715d

Mente, E.; Karalazos, V.; Karapanagiotidis, I.T.; Pita, C. (2011). Nutrition in organic aquaculture: an inquiry and a discourse. Aquaculture Nutrition, 17(4), e798‒e817. https://doi.org/10.1111/j.1365-2095.2010.00846.x.

About this article

SUBMITTED: 23 May 2024
ACCEPTED: 05 August 2024
PUBLISHED: 30 August 2024
SUBMITTED to ACCEPTED: 75 days
DOI: https://doi.org/10.53623/tebt.v2i2.451

Cite this article
Omweno, J. O., Argwings, O. ., Sieberi, B. M. ., Angima, M. ., & Ondieki, P. M. . (2024). Utilization of Aquatic Plants and Microalgae for Sustainable Aquaculture Production and Potential Biotechnological Applications. Tropical Environment, Biology, and Technology, 2(2), 57–71. https://doi.org/10.53623/tebt.v2i2.451
Keywords
Accessed
449
Citations
0
Share this article