Skip to main content

Occurrence of Microplastics in Drinking Water in South East Asia: A Short Review

Author(s): Wei Xuen New 1 , Risky Ayu Kristanti 2 ORCID https://orcid.org/0000-0003-2096-3923 , Helena Manik 3 , Yureana Wijayanti 3 , 4 , ORCID https://orcid.org/0000-0002-9341-9681 , Daniel A. Adeyemi
Author(s) information:
1 Environmental Engineering Program, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
2 Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
3 Civil Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia, 11480
4 Environmental Engineering, School of Engineering and Energy, Murdoch University, Western Australia, Australia

Corresponding author

This study reviews the levels and sources of microplastics in drinking water in Southeast Asia, assessing potential risks to human health and the environment, evaluating water treatment processes, and identifying remediation strategies to reduce microplastic pollution. Southeast Asia is home to nine of the ten most plastic-polluted rivers in the world, discharging vast amounts of plastic waste into the sea, causing adverse effects on marine biodiversity and ecosystems. Microplastics have become a global environmental issue and are found in various sources of drinking water, including tap water, plastic and glass bottled drinking water, treated water, and both single-use and returnable plastic bottled drinking water. Ingesting microplastics can cause physical damage and chemical toxicity, leading to health problems such as inflammation, DNA damage, and cancer. The study discusses physical, chemical, and biological methods for remediation, which have benefits and drawbacks and may not be effective in all situations. More research is needed to understand the extent of microplastic pollution in Southeast Asia and develop effective remediation strategies. Eliminating microplastics from the environment is necessary to protect ecosystems, wildlife, and human health.

Next article

Riani, E.; Cordova, M. R. (2022). Microplastic ingestion by the sandfish Holothuria scabra in Lampung and Sumbawa, Indonesia. Marine Pollution Bulletin, 175, 113134. https://doi.org/10.1016/j.marpolbul.2021.113134.

Prata, J.C. (2018). Airborne microplastics: Consequences to human health? Environmental Pollution, 234, 115–126. https://doi.org/10.1016/j.envpol.2017.11.043.

Primpke, S.; Wirth, M.; Lorenz, C.; Gerdts, G. (2018). Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy. Analytical and Bioanalytical Chemistry, 410, 5131–5141. https://doi.org/10.1007/s00216-018-1156-x.

Lv, L.; He, L.; Jiang, S.; Chen, J.; Zhou, C.; Qu, J.; Lu, Y.; Hong, P.; Sun, S.; Li, C. (2020). In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic

Tropical Environment, Biology, and Technology 3(1), 2023, 14-24

environments. Science of the Total Environment, 728, 138449. https://doi.org/10.1016/j.scitotenv.2020.138449.

Ivleva, N.P.; Wiesheu, A.C.; Niessner, R. (2017). Microplastic in Aquatic Ecosystems. Angewandte Chemie - International Edition, 56, 1720–1739. https://doi.org/10.1002/anie.201606957.

Lebreton, L.C.; Van der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8, 1-10. https://doi.org/10.1038/ncomms15611.

Ricciardi, M.; Pironti, C.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. (2021). Microplastics in the Aquatic Environment: Occurrence, Persistence, Analysis, and Human Exposure. Water, 13, 973. https://doi.org/10.3390/w13070973.

Nguyen, N.T.; Nhon, N.T.T.; Hai, H.T.N.; Chi, N.D.T.; Hien, T.T. (2022). Characteristics of Microplastics and Their Affiliated PAHs in Surface Water in Ho Chi Minh City, Vietnam. Polymers, 14, 2450. https://doi.org/10.3390/polym14122450.

Sembiring, E., Fareza, A.A., Suendo, V. et al. (2020). The Presence of Microplastics in Water, Sediment, and Milkfish (Chanos chanos) at the Downstream Area of Citarum River, Indonesia. Water Air Soil Pollut, 231, 355. https://doi.org/10.1007/s11270-020-04710-y.

Luqman, A.; Nugrahapraja, H.; Wahyuono, R.A.; Islami, I.; Haekal, M.H.; Fardiansyah, Y.; Putri, B.Q.; Amalludin, F.I.; Rofiqa, E.A.; Götz, F.; Wibowo, A.T. (2021). Microplastic Contamination in Human Stools, Foods, and Drinking Water Associated with Indonesian Coastal Population. Environments, 8, 138. https://doi.org/10.3390/environments8120138.

Chanpiwat, P.; Damrongsiri, S. (2021). Abundance and characteristics of microplastics in freshwater and treated tap water in Bangkok, Thailand. Environmental Monitoring and Assessment, 193, 258. https://doi.org/10.1007/s10661-021-09012-2.

Praveena, S.M.: Ariffin, N.I.I.; Nafisyah, A.L. (2022). Microplastics in Malaysian bottled water brands: Occurrence and potential human exposure. Environmental Pollution, 315, 120494, https://doi.org/10.1016/j.envpol.2022.120494.

Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. (2019). Low numbers of microplastics detected in drinking water from ground water sources. Science of The Total Environment, 648, 631–635. https://doi.org/10.1016/J.SCITOTENV.2018.08.178.

Johnson, A.C.; Ball, H.; Cross, R.; Horton, A.A.; Jürgens, M.D.; Read, D.S.; Vollertsen, J.; Svendsen, C. (2020). Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. Environmental Science and Technology, 54(19), 12326–12334.

Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment, 643, 1644–1651. https://doi.org/10.1016/J.SCITOTENV.2018.08.102

Do, M.V.; Le, T.X.T.; Vu, N.D.; Dang, T.T. (2022). Distribution and occurrence of microplastics in wastewater treatment plants. Environmental Technology & Innovation, 26, 102286. https://doi.org/10.1016/j.eti.2022.102286.

Kumari, A.; Rajput, V.D.; Mandzhieva, S.S.; Rajput, S.; Minkina, T.; Kaur, R.; Sushkova, S.; Kumari, P.; Ranjan, A.; Kalinitchenko, V.P.; Glinushkin, A.P. (2022). Microplastic Pollution: An Emerging Threat to Terrestrial Plants and Insights into Its Remediation Strategies. Plants, 11, 340. https://doi.org/10.3390/plants11030340.

Hytönen, J.; Nurmi, J.; Kaakkurivaara, N.; Kaakkurivaara, T. Rubber Tree (Hevea brasiliensis) Biomass, Nutrient Content, and Heating Values in Southern Thailand. Forests 2019, 10, 638. https://doi.org/10.3390/f10080638.

Tropical Environment, Biology, and Technology 3(1), 2023, 14-24

Carrasco-Navarro, V.; Nuutinen, A.; Sorvari, J.; Kukkonen, J.V. (2022). Toxicity of Tire Rubber Microplastics to Freshwater Sediment Organisms. Archieves of Environmental Contamiantion and Toxicology, 82, 180–190. https://doi.org/10.1007/s00244-021-00905-4.

Poma, A.; Aloisi, M.; Bonfigli, A.; Colafarina, S.; Zarivi, O.; Aimola, P.; Vecchiotti, G.; Arrizza, L.; Di Cola, A.; Cesare, P. (2023). Particle Debris Generated from Passenger Tires Induces Morphological and Gene Expression Alterations in the Macrophages Cell Line RAW 264.7. Nanomaterials, 13, 756. https://doi.org/10.3390/nano13040756.

Mihai, F.-C.; Gündoğdu, S.; Markley, L.A.; Olivelli, A.; Khan, F.R.; Gwinnett, C.; Gutberlet, J.; Reyna-Bensusan, N.; Llanquileo-Melgarejo, P.; Meidiana, C.; Elagroudy, S.; Ishchenko, V.; Penney, S.; Lenkiewicz, Z.; Molinos-Senante, M. (2022). Plastic Pollution, Waste Management Issues, and Circular Economy Opportunities in Rural Communities. Sustainability, 14, 20. https://doi.org/10.3390/su14010020.

Ng, C.H.; Mistoh, M.A.; Teo, S.H.; Galassi, A.; Ibrahim, A.; Sipaut, CS.; Foo, J.; Seay, J.; Taufiq-Yap, YH.; Janaun, J. (2023) Plastic waste and microplastic issues in Southeast Asia. Frontier in Environmental Science, 11, 1142071. https://doi.org/10.3389/fenvs.2023.1142071.

Yee, M.S.; Hii, L.W.; Looi, C.K.; Lim, W.M.; Wong, S.F.; Kok, Y.Y.; Tan, B.K.; Wong, C.Y.; Leong, C.O. (2021), Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 11, 496. https://doi.org/10.3390/nano11020496.

Yuan, Z.; Nag, R.; Cummins, E. (2022). Ranking of potential hazards from microplastics polymers in the marine environment. Journal of Hazardous Materials, 429, 128399, https://doi.org/10.1016/j.jhazmat.2022.128399.

Kefer, S.; Miesbauer, O.; Langowski, H.-C. (2021). Environmental Microplastic Particles vs. Engineered Plastic Microparticles—A Comparative Review. Polymers, 13, 2881. https://doi.org/10.3390/polym13172881.

Farhat, S.C.L.; Silva, C.A.; Orione, M.A.M.; Campos, L.M.A.; Sallum, A.M.E.; Braga, A.L.F. (2011). Air pollution in autoimmune rheumatic diseases: A review. Autoimmunity Reviews, 11, 14–21. https://doi.org/10.1016/J.AUTREV.2011.06.008.

Prata, J. (2018). Controlling land-based sources as a measure to reduce (micro)plastic contamination in coastal environments. Frontiers in Marine Science Conference Abstract: IMMR'18, 5. https://doi.org/10.3389/conf.fmars.2018.06.00094.

Goh, P.S.; Kang, H.S.; Ismail, A.F.; Khor, W.H.; Quen, L.K.; Higgins, D. (2022). Nanomaterials for microplastic remediation from aquatic environment: Why nano matters? Chemosphere, 299, 134418. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134418.

Wang, Z.; Sun, C.; Li, F.; Chen, L. (2021). Fatigue resistance, re-usable and biodegradable sponge materials from plant protein with rapid water adsorption capacity for microplastics removal. Chemical Engineering Journal, 415, 129006. https://doi.org/10.1016/J.CEJ.2021.129006.

Lapointe, M.; Farner, J.M.; Hernandez, L.M.; Tufenkji, N. (2020). Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science and Technology, 54, 8719–8727. https://doi.org/10.1021/ACS.EST.0C00712/SUPPL_FILE/ES0C00712_SI_001.PDF.

Ma, B.; Xue, W.; Hu, C.; Liu, H.; Qu, J.; Li, L. (2019). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 359, 159–167. https://doi.org/10.1016/j.cej.2018.11.155.

Liu, X.; Yuan, W.; Di, M.; Li, Z.; Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, 176–182. https://doi.org/10.1016/J.CEJ.2019.01.033.

Iyare, P.U.; Ouki, S.K.; Bond, T. (2020). Microplastics removal in wastewater treatment plants: a critical review. Environmental Science Water Research & Technology, 6, 2664.

Tropical Environment, Biology, and Technology 3(1), 2023, 14-24

http://doi.org/10.1039/d0ew00397b.

Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236–246. http://doi.org/10.1016/j.watres.2018.01.049.

Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. (2019). New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceramics International, 45, 9618–9624. https://doi.org/10.1016/J.CERAMINT.2018.10.208.

Ahmed, M.B.; Rahman, M.S.; Alom, J.; Hasan, M.S.; Johir, M.A.H.; Mondal, M.I.H.; Lee, D.Y.; Park, J.; Zhou, J.L.; Yoon, M.H. (2021). Microplastic particles in the aquatic environment: A systematic review. Science of the Total Environment, 775, 145793. https://doi.org/10.1016/j.scitotenv.2021.145793.

Zhang, M.; Li, J.; Ding, H.; Ding, J.; Jiang, F.; Ding, N.X.; Sun, C. (2019). Distribution Characteristics and Influencing Factors of Microplastics in Urban Tap Water and Water Sources in Qingdao, China. Water, Air, & Soil Pollution, 230, 1312–1327. https://doi.org/10.1080/00032719.2019.1705476.

About this article

SUBMITTED: 12 March 2023
ACCEPTED: 03 May 2023
PUBLISHED: 25 June 2023
SUBMITTED to ACCEPTED: 52 days
DOI: https://doi.org/10.53623/tebt.v1i1.221

Cite this article
New, W. X. ., Kristanti, R. A. ., Manik, H. ., Wijayanti, Y. ., & Adeyemi, D. A. . (2023). Occurrence of Microplastics in Drinking Water in South East Asia: A Short Review. Tropical Environment, Biology, and Technology, 1(1), 14–24. https://doi.org/10.53623/tebt.v1i1.221
Keywords
Accessed
1003
Citations
0
Share this article