Skip to main content

Enhancing Soil Health: Nanotechnologies for Effective Remediation and Sustainable Development

Author(s): Brendan Lik Sen Kho 1 , Ang Kean Hua 2 , Mohd Fadzil Ali Ahmad 3
Author(s) information:
1 Environmental Engineering Programme, Faculty of Engineering & Science, Curtin University, Sarawak, Malaysia
2 Geography Program, Faculty of Social Sciences and Humanities, Universiti Malaysia Sabah (UMS), Sabah, Malaysia
3 Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang. Malaysia

Corresponding author

The growing population has led to the increase in contamination to the soil, affecting the soil environment which indirectly affects importance of human health. Soil remediation is important to remove and reduce the level of contamination in the soil medium. If the contaminants present in the soil is not remediated, the possibilities of it to spread will increase due to the presence of water flow inside the soil medium, further contaminating soils that are previously clean. Hence, several nanotechnologies and nanomaterials were discovered by researchers, allowing the remediation of soil that are contaminated by different pollutants to be effectively carried out. The nanotechnologies and nanomaterials discussed in this paper involves physical, chemical and biological type of remediation. It is being known that nanoscale remediation can have higher effectiveness compared to microscale remediation. Most of the discussed nanotechnologies requires longer period of time but the effectiveness in the removal or reduction of contaminants are very high. Remediation of contaminated soils allow more land to be available for human development and exploitation. Humans are urged to reduce the chances of contamination activities or accident as contamination to the soil can adversely affect the local environment and the human health.  

Xin, X.; Shentu, J.; Zhang, T.; Yang, X.; Baligar, V.C.; He, Z. (2022). Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals. Sustainability, 14, 15878. https://doi.org/10.3390/su142315878.

Alazaiza, M.Y.; Albahnasawi, A.; Ali, G.A.; Bashir, M.J.; Copty, N.K.; Amr, S.S.A.; Abushammala, M.F.M.; Al Maskari, T. (2021). Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review. Water, 13(16), 2186. https://doi.org/10.3390/w13162186.

Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. (2015). Soil Contamination in China: Current Status and Mitigation Strategies. Environmental Science & Technology, 49(2), 750−759. https://doi.org/10.1021/es5047099.

Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Li, R.; Bibi, S. (2022). Research progress on heavy metals pollution in the soil of smelting sites in China. Toxics, 10(5), 231.

Bayabil, H.K.; Teshome, F.T.; Li, Y.C. (2022). Emerging Contaminants in Soil and Water. Frontiers in Environmental Science, 10, 873499. https://doi.org/10.3390/toxics10050231.

Soil and Pesticides. (accessed on 10 June 2023) Available online: http://npic.orst.edu/envir/soil.html.

Hammam, A.A.; Mohamed, W.S.; Sayed, S.E.-E.; Kucher, D.E.; Mohamed, E.S. (2022). Assessment of Soil Contamination Using GIS and Multi-Variate Analysis: A Case Study in El-Minia Governorate, Egypt. Agronomy, 12, 1197. https://doi.org/10.3390/agronomy12051197.

Zhao, H.; Wu, Y.; Lan, X.; Yang, Y.; Wu, X.; Du, L. (2022). Comprehensive assessment of harmful heavy metals in contaminated soil to score pollution level. Scientific Reports, 12(1), 1−13. https://doi.org/10.1038/s41598-022-07602-9.

Kristanti, R.A.; Liong, R.M.Y.; Hadibarata, T. (2021). Soil remediation applications of nanotechnology. Tropical Aquatic and Soil Pollution, 1, 35−45. http://doi.org/10.53623/tasp.v1i1.12.

Galdames, A.; Ruiz-Rubio, L.; Orueta, M.; Sánchez-Arzalluz, M.; Vilas-Vilela, J.L. (2020). Zero-valent iron nanoparticles for soil and groundwater remediation. International Journal of Environmental Research and Public Health, 17(16), 5817. https://doi.org/10.3390%2Fijerph17165817.

Ur Rahim, H.; Qaswar, M.; Uddin, M.; Giannini, C.; Herrera, M.L.; Rea, G. (2021). Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomaterials, 11(8), 2068. https://doi.org/10.3390/nano11082068.

Grifoni, M.; Franchi, E.; Fusini, D.; Vocciante, M.; Barbafieri, M.; Pedron, F. et al. (2022). Soil remediation: Towards a resilient and adaptive approach to deal with ever-changing environmental challenges. Environments, 9(2), 18. https://doi.org/10.3390/environments9020018.

Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y. (2019). Thermal desorption for remediation of contaminated soil: A review. Chemosphere, 221, 841−855. https://doi.org/10.1016/j.chemosphere.2019.01.079.

Liu, J.; Chen, T.; Qi, Z.; Yan, J.; Buekens, A.; Li, X. (2014). Thermal desorption of PCBs from contaminated soil using nano zerovalent iron. Environmental Science and Pollution Research, 21(22), 12739−12746. https://doi.org/10.1007/s11356-014-3226-8.

Gitipour, S.; Mohebi, M.; Taheri, E. (2011). Evaluation of carcinogenic risk due to accidental ingestion of PAHs in contaminated soils. CLEAN–Soil, Air, Water, 39(9), 820−826. https://doi.org/10.1002/clen.201000480.

Méndez, E.; Pérez, M.; Romero, O.; Beltrán, E.D.; Castro, S.; Corona, J.L.; Cuevas, M.C.; Bustos, E. (2012). Effects of electrode material on the efficiency of hydrocarbon removal by an electrokinetic remediation process. Electrochimica Acta, 86, 148−156. https://doi.org/10.1016/j.electacta.2012.04.042.

Gidudu, B.; Chirwa, E.M. (2022). The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules, 27(21), 7381. https://doi.org/10.3390/molecules27217381.

Vocciante, M.; Dovì, V.G.; Ferro, S. (2021). Sustainability in ElectroKinetic Remediation processes: A critical analysis. Sustainability, 13(2), 770. https://doi.org/10.3390/su13020770.

Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. (2018). Nanotechnology for Environmental Remediation: Materials and Applications. Molecules, 23, 1760. https://doi.org/10.3390/molecules23071760.

Jiang, D.; Zeng, G.; Huang, D.; Chen, M.; Zhang, C.; Huang, C.; Wan, J. (2018). Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environmental Research, 163, 217v227. https://doi.org/10.1016/j.envres.2018.01.030.

Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.; Hashimoto, Y.; Hou, D. et al. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 134, 105046. https://doi.org/10.1016/j.envint.2019.105046.

Qian, Y.; Qin, C.; Chen, M.; Lin, S. (2020). Nanotechnology in soil remediation− applications vs. implications. Ecotoxicology and Environmental Safety, 201, 110815. https://doi.org/10.1016/j.ecoenv.2020.110815.

Elgazali, A.; Althalb, H.; Elmusrati, I.; Ahmed, H.M.; Banat, I.M. (2023). Remediation Approaches to Reduce Hydrocarbon Contamination in Petroleum-Polluted Soil. Microorganisms, 11, 2577. https://doi.org/10.3390/microorganisms11102577.

Remediation Technology Descriptions for Cleaning Up Contaminated Sites. (accessed on 10 June 2023) Available online: https://www.epa.gov/remedytech/remediation-technology-descriptions-cleaning-contaminated-sites.

Bartucca, M.L.; Cerri, M.; Forni, C. (2023). Phytoremediation of Pollutants: Applicability and Future Perspective. Plants, 12, 2462. https://doi.org/10.3390/plants12132462.

Henry, H.F.; Burken, J.G.; Maier, R.M.; Newman, L.A.; Rock, S.; Schnoor, J.L.; Suk, W.A. (2013). Phytotechnologies–preventing exposures, improving public health. International Journal of Phytoremediation, 15(9), 889-899. https://doi.org/10.1080%2F15226514.2012.760521.

Wang, J.; Delavar, M.A. (2023). Techno-economic analysis of phytoremediation: A strategic rethinking. Science of The Total Environment, 902, 165949. https://doi.org/10.1016/j.scitotenv.2023.165949.

Lasat, M.M. (2002). Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, 31(1), 109−120. https://doi.org/10.2134/jeq2002.1090.

Vázquez-Núñez, E.; Molina-Guerrero, C.E.; Peña-Castro, J.M.; Fernández-Luqueño, F.; de la Rosa-Álvarez, M.G. (2020). Use of Nanotechnology for the Bioremediation of Contaminants: A Review. Processes, 8, 826. https://doi.org/10.3390/pr8070826.

Rajput, V. D.; Minkina, T.; Upadhyay, S. K.; Kumari, A.; Ranjan, A.; Mandzhieva, S.; Sushkova, S.; Singh, R.K.; Verma, K.K. (2022). Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 12(5), 769. https://doi.org/10.3390/nano12050769.

Rajput, V.D.; Minkina, T.; Upadhyay, S.K.; Kumari, A.; Ranjan, A.; Mandzhieva, S.; Sushkova, S.; Singh, R.K.; Verma, K.K. (2022). Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 12, 769. https://doi.org/10.3390/nano12050769.

Aliyari Rad, S.; Nobaharan, K.; Pashapoor, N.; Pandey, J.; Dehghanian, Z.; Senapathi, V.; Minkina, T.; Ren, W.; Rajput, V.D.; Asgari Lajayer, B. (2023). Nano-Microbial Remediation of Polluted Soil: A Brief Insight. Sustainability, 15, 876. https://doi.org/10.3390/su15010876.

Kumari, R.; Suman, K.; Karmakar, S.; Lakra, S.G.; Saurav, G.K.; Mahto, B.K. (2023). Regulation and Safety Measures for Nanotechnology-based Agri-Products. Frontiers in Genome Editing, 5, 1200987. https://doi.org/10.3389%2Ffgeed.2023.1200987.

Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. (2022). Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics, 10(8), 484. https://doi.org/10.3390/toxics10080484.

Medina-Pérez, G.; Fernández-Luqueño, F.; Vazquez-Nuñez, E.; López-Valdez, F.; Prieto-Mendez, J.; Madariaga-Navarrete, A.; Miranda-Arámbula, M. (2019). Remediating Polluted Soils Using Nanotechnologies: Environmental Benefits and Risks. Polish Journal of Environmental Studies, 28(3), 1−17. http://doi.org/10.15244/pjoes/87099.

Zhang, S.; Zhu, D.; Li, L. (2023). Urbanization, Human Inequality, and Material Consumption. International Journal of Environmental Research and Public Health, 20, 4582. https://doi.org/10.3390/ijerph20054582.

About this article

SUBMITTED: 30 January 2024
ACCEPTED: 01 March 2024
PUBLISHED: 4 March 2024
SUBMITTED to ACCEPTED: 32 days
DOI: https://doi.org/10.53623/sein.v1i1.409

Cite this article
Kho , B. L. S., Hua, A. K. ., & Ahmad, M. F. A. (2024). Enhancing Soil Health: Nanotechnologies for Effective Remediation and Sustainable Development. Sustainable Environmental Insight, 1(1), 45–57. https://doi.org/10.53623/sein.v1i1.409
Keywords
Accessed
236
Citations
0
Share this article