Mukhopadhyay, S.; Dutta, R.; Das, P. (2020). A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. Chemosphere, 251, 126441. https://doi.org/10.1016/j.chemosphere.2020.126441.
Dai, C.; Han, Y.; Duan, Y.; Lai, X.; Fu, R.; Liu, S.; Leong, K.H.; Tu, Y.; Zhou, L. (2022). Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environmental Research, 205, 112423. https://doi.org/10.1016/j.envres.2021.112423.
Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944-968. https://doi.org/10.1016/j.chemosphere.2016.10.115.
Zainip, V.J.; Adnan, L.A.; Elshikh, M.S. (2021). Decolorization of Remazol Brilliant Violet 5R and Procion Red MX-5B by Trichoderma Species. Tropical Aquatic and Soil Pollution, 1, 108–117. https://doi.org/10.53623/tasp.v1i2.25.
Ishak, Z.; Salim, S.; Kumar, D. (2021). Adsorption of Methylene Blue and Reactive Black 5 by Activated Carbon Derived from Tamarind Seeds. Tropical Aquatic and Soil Pollution, 2, 1–12. https://doi.org/10.53623/tasp.v2i1.26.
Chung, J.H.; Hasyimah, N.; Hussein, N. (2021). Application of Carbon Nanotubes (CNTs) for Remediation of Emerging Pollutants - A Review. Tropical Aquatic and Soil Pollution, 2, 13–26. https://doi.org/10.53623/tasp.v2i1.27.
Kristanti, R.A.; Liong, R.M.Y.; Hadibarata, T. (2021). Soil Remediation Applications of Nanotechnology. Tropical Aquatic and Soil Pollution, 1, 35–45. https://doi.org/10.53623/tasp.v1i1.12.
Liu, S.H.; Zeng, G.M.; Niu, Q.Y.; Liu, Y.; Zhou, L.; Jiang, L.H.; Tan, X.F.; Xu, P.; Zhang, C.; Cheng, M. (2017). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25-33. https://doi.org/10.1016/j.biortech.2016.11.095.
Kadri, T.; Rouissi, T.; Brar, S.K.; Cledon, M.; Sarma, S.; Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52-74. https://doi.org/10.1016/j.jes.2016.08.023.
de Almeida, F.F.; Freitas, D.; Motteran, F.; Fernandes, B.S.; Gavazza, S. (2021). Bioremediation of polycyclic aromatic hydrocarbons in contaminated mangroves: Understanding the historical and key parameter profiles. Marine Pollution Bulletin, 169, 112553. https://doi.org/10.1016/j.marpolbul.2021.112553.
Shi, Z.; Liu, J.; Tang, Z.; Zhao, Y.; Wang, C. (2020). Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives. Applied Soil Ecology, 147, 103377. https://doi.org/10.1016/j.apsoil.2019.103377.
Rodriguez-Campos, J.; Dendooven, L.; Alvarez-Bernal, D.; Contreras-Ramos, S.M. (2014). Potential of earthworms to accelerate removal of organic contaminants from soil: A review. Applied Soil Ecology, 79, 10-25. https://doi.org/10.1016/j.apsoil.2014.02.010.
Dabke, S.V. (2013). Vermi-remediation of heavy metal-contaminated soil. Journal of Health and Pollution, 3, 4–10. https://doi.org/10.5696/2156-9614-3.4.4.
Asgharnia, H.; Jafari, A.J.; Kalantary, R.R.; Nasseri, S.; Mahvi, A.; Yaghmaeian, K.; Shahamat, Y.D. (2014). Influence of bioaugmentation on biodegradation of phenanthrene-contaminated soil by earthworm in lab scale. Journal of Environmental Health Science and Engineering, 12, 150. http://doi.org/10.1186/s40201-014-0150-2.
Jager, T.; van der Wal, L.; Fleuren, R.H.; Barendregt, A.; Hermens, J.L. (2005). Bioaccumulation of organic chemicals in contaminated soils: evaluation of bioassays with earthworms. Environmental Science and Technology, 39, 293-298. https://doi.org/10.1021/es035317o.
Richardson, J.B.; Görres, J.H.; Sizmur, T. (2020). Synthesis of earthworm trace metal uptake and bioaccumulation data: Role of soil concentration, earthworm ecophysiology, and experimental design. Environmental Pollution, 262, 114126. https://doi.org/10.1016/j.envpol.2020.114126.
Canesi, L.; Procházková, P. The invertebrate immune system as a model for investigating the environmental impact of nanoparticles. In Nanoparticles and the immune system, safety and effects, Boraschi, D., Duschl, A. Eds.; Academic Press, Oxford, 2015, pp. 91-112.
Johnsen, A.R.; Wick, L.Y.; Harms, H. (2005). Principles of microbial PAH- degradation in soil. Environmental Pollution, 33, 71-84. https://doi.org/10.1016/j.envpol.2004.04.015.
Schaefer, M.; Petersen, S.O.; Filser, J. (2005). Effects of Lumbricus terrestris, Allolobophora chlorotica and Eisenia fetida on microbial community dynamics in oil contaminated soil. Soil Biology and Biochemistry, 37, 2065-2076. https://doi.org/10.1016/j.soilbio.2005.03.010.
Coutino-Gonzalez, E.; Hernandez-Carlos, B.; Gutierrez-Ortiz, R.; Dendooven. L. (2010). The earthworm Eisenia fetida accelerates the removal of anthracene and 9,10-anthrauinone, the most abundant degradation product in soil. International Biodeterioration and Biodegradation, 64, 525-529. https://doi.org/10.1016/j.ibiod.2010.05.002.
Matscheko, N.; Lundstedt, S.; Svensson. L.; Harju. M.; Tysklind, M. (2002). Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida). Environmental Toxicology and Chemistry, 21, 1724-1729. https://doi.org/10.1002/etc.5620210826.
Martinkosky, L.; Barkley, J.; Sabadell, G.; Gough, H.; Davidson, S. (2017). Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons. Science of the Total Environment, 580, 734-743. https://doi.org/10.1016/j.scitotenv.2016.12.020.
SUBMITTED: 05 February 2022
ACCEPTED: 25 March 2022
PUBLISHED:
5 April 2022
SUBMITTED to ACCEPTED: 48 days
DOI:
https://doi.org/10.53623/idwm.v2i1.62