Skip to main content
Search for Articles:
Industrial and Domestic Waste Management
Share

Open Access Article

Tolerance of Earthworms in Soil Contaminated with Polycyclic Aromatic Hydrocarbon

by Rubiyatno 1 , Zee Chuang Teh 2 , Diah Velentina Lestari 3 , Arma Yulisa 4 , Muthah Musa 5 , Tse-Wei Chen 6 , Noura M. Darwish 7 , Bandar M. AlMunqedhi 8 , Tony Hadibarata 9
1 Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Japan.
2 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Malaysia.
3 Division of Environment and Sustainability, The Hongkong Univesity of Science and Technology, Hongkong.
4 Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea.
5 Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, Level 4 Gehrmann Laboratories Building, Research Rd, St Lucia QLD 4067, Australia.
6 Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
7 College of Sciece, Ai Shams University, Cairo, Egypt.
8 Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
9 Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, CDT250, Malaysia.

SUBMITTED: 05 February 2022; ACCEPTED: 25 March 2022; PUBLISHED: 5 April 2022

Submission to final decision takes 47 days.


Get rights and content
Creative Commons Attribution 4.0 International License

Abstract

Abstract

Pyrene is a very resistant polycyclic aromatic hydrocarbon (PAH) with four benzene rings that survives in the environment. This study was aimed at investigating the tolerance of earthworms in soil contaminated with pyrene. The studies were performed by employing earthworms gathered from shady regions adjacent to sewage ponds as pyrene degraders to eradicate pyrene from the soil. Numerous factors affecting pyrene degradation efficiency were explored, including the effect of contaminant concentration, earthworm and soil ration, and soil condition. The highest pyrene removal (31.2%) was shown by earthworms in the condition of soil mixed with cow dung. Pyrene decomposition was inhibited during soil sterilization due to the absence of soil microorganisms and indigenous pyrene-degrading bacteria. Nonetheless, earthworms are suitable for use as pyrene degraders in contaminated soil.

Keywords: Removal, wild earthworm, pyrene, soil.

Creative Commons Attribution 4.0 International (CC BY 4.0) License
© 2022 Rubiyatno, Zee Chuang Teh, Diah Velentina Lestari, Arma Yulisa, Muthah Musa, Tse-Wei Chen, Noura M. Darwish, Bandar M. AlMunqedhi, Tony Hadibarata. This is an open access article distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share and Cite

ACS Styles
APA Styles
Rubiyatno, Teh, Z. C., Lestari, D. V., Yulisa, A., Musa, M., Chen, T.-W., Darwish, N. M., AlMunqedhi, B. M., & Hadibarata, T. (2022). Tolerance of Earthworms in Soil Contaminated with Polycyclic Aromatic Hydrocarbon. Industrial and Domestic Waste Management, 2(1), 9–16. https://doi.org/10.53623/idwm.v2i1.62
MLA Styles
Find Other Styles

Mukhopadhyay, S.; Dutta, R.; Das, P. (2020). A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. Chemosphere, 251, 126441. https://doi.org/10.1016/j.chemosphere.2020.126441.

Dai, C.; Han, Y.; Duan, Y.; Lai, X.; Fu, R.; Liu, S.; Leong, K.H.; Tu, Y.; Zhou, L. (2022). Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environmental Research, 205, 112423. https://doi.org/10.1016/j.envres.2021.112423.

Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944-968. https://doi.org/10.1016/j.chemosphere.2016.10.115.

Zainip, V.J.; Adnan, L.A.; Elshikh, M.S. (2021). Decolorization of Remazol Brilliant Violet 5R and Procion Red MX-5B by Trichoderma Species. Tropical Aquatic and Soil Pollution, 1, 108–117. https://doi.org/10.53623/tasp.v1i2.25.

Ishak, Z.; Salim, S.; Kumar, D. (2021). Adsorption of Methylene Blue and Reactive Black 5 by Activated Carbon Derived from Tamarind Seeds. Tropical Aquatic and Soil Pollution, 2, 1–12. https://doi.org/10.53623/tasp.v2i1.26.

Chung, J.H.; Hasyimah, N.; Hussein, N. (2021). Application of Carbon Nanotubes (CNTs) for Remediation of Emerging Pollutants - A Review. Tropical Aquatic and Soil Pollution, 2, 13–26. https://doi.org/10.53623/tasp.v2i1.27.

Kristanti, R.A.; Liong, R.M.Y.; Hadibarata, T. (2021). Soil Remediation Applications of Nanotechnology. Tropical Aquatic and Soil Pollution, 1, 35–45. https://doi.org/10.53623/tasp.v1i1.12.

Liu, S.H.; Zeng, G.M.; Niu, Q.Y.; Liu, Y.; Zhou, L.; Jiang, L.H.; Tan, X.F.; Xu, P.; Zhang, C.; Cheng, M. (2017). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25-33. https://doi.org/10.1016/j.biortech.2016.11.095.

Kadri, T.; Rouissi, T.; Brar, S.K.; Cledon, M.; Sarma, S.; Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52-74. https://doi.org/10.1016/j.jes.2016.08.023.

de Almeida, F.F.; Freitas, D.; Motteran, F.; Fernandes, B.S.; Gavazza, S. (2021). Bioremediation of polycyclic aromatic hydrocarbons in contaminated mangroves: Understanding the historical and key parameter profiles. Marine Pollution Bulletin, 169, 112553. https://doi.org/10.1016/j.marpolbul.2021.112553.

Shi, Z.; Liu, J.; Tang, Z.; Zhao, Y.; Wang, C. (2020). Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives. Applied Soil Ecology, 147, 103377. https://doi.org/10.1016/j.apsoil.2019.103377.

Rodriguez-Campos, J.; Dendooven, L.; Alvarez-Bernal, D.; Contreras-Ramos, S.M. (2014). Potential of earthworms to accelerate removal of organic contaminants from soil: A review. Applied Soil Ecology, 79, 10-25. https://doi.org/10.1016/j.apsoil.2014.02.010.

Dabke, S.V. (2013). Vermi-remediation of heavy metal-contaminated soil. Journal of Health and Pollution, 3, 4–10. https://doi.org/10.5696/2156-9614-3.4.4.

Asgharnia, H.; Jafari, A.J.; Kalantary, R.R.; Nasseri, S.; Mahvi, A.; Yaghmaeian, K.; Shahamat, Y.D. (2014). Influence of bioaugmentation on biodegradation of phenanthrene-contaminated soil by earthworm in lab scale. Journal of Environmental Health Science and Engineering, 12, 150. http://doi.org/10.1186/s40201-014-0150-2.

Jager, T.; van der Wal, L.; Fleuren, R.H.; Barendregt, A.; Hermens, J.L. (2005). Bioaccumulation of organic chemicals in contaminated soils: evaluation of bioassays with earthworms. Environmental Science and Technology, 39, 293-298. https://doi.org/10.1021/es035317o.

Richardson, J.B.; Görres, J.H.; Sizmur, T. (2020). Synthesis of earthworm trace metal uptake and bioaccumulation data: Role of soil concentration, earthworm ecophysiology, and experimental design. Environmental Pollution, 262, 114126. https://doi.org/10.1016/j.envpol.2020.114126.

Canesi, L.; Procházková, P. The invertebrate immune system as a model for investigating the environmental impact of nanoparticles. In Nanoparticles and the immune system, safety and effects, Boraschi, D., Duschl, A. Eds.; Academic Press, Oxford, 2015, pp. 91-112.

Johnsen, A.R.; Wick, L.Y.; Harms, H. (2005). Principles of microbial PAH- degradation in soil. Environmental Pollution, 33, 71-84. https://doi.org/10.1016/j.envpol.2004.04.015.

Schaefer, M.; Petersen, S.O.; Filser, J. (2005). Effects of Lumbricus terrestris, Allolobophora chlorotica and Eisenia fetida on microbial community dynamics in oil contaminated soil. Soil Biology and Biochemistry, 37, 2065-2076. https://doi.org/10.1016/j.soilbio.2005.03.010.

Coutino-Gonzalez, E.; Hernandez-Carlos, B.; Gutierrez-Ortiz, R.; Dendooven. L. (2010). The earthworm Eisenia fetida accelerates the removal of anthracene and 9,10-anthrauinone, the most abundant degradation product in soil. International Biodeterioration and Biodegradation, 64, 525-529. https://doi.org/10.1016/j.ibiod.2010.05.002.

Matscheko, N.; Lundstedt, S.; Svensson. L.; Harju. M.; Tysklind, M. (2002). Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida). Environmental Toxicology and Chemistry, 21, 1724-1729. https://doi.org/10.1002/etc.5620210826.

Martinkosky, L.; Barkley, J.; Sabadell, G.; Gough, H.; Davidson, S. (2017). Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons. Science of the Total Environment, 580, 734-743. https://doi.org/10.1016/j.scitotenv.2016.12.020.

Article Metrics

For more information on the journal statistics, click here.