Skip to main content

Effect of Different Biomass Levels of Eichhornia crassipes and Pistia stratiotes on Nutrients, Organics, and Heavy Metals Removal from Wastewater

Author(s): Adewale V. Ajiboye 1 , Babajide Badmos 1 , Adedeji A. Adelodun 2 , 3 , , Josiah O. Babatola 1
Author(s) information:
1 School of Engineering and Engineering Technology, Department of Civil and Environmental Engineering, The Federal University of Technology Akure, P.M.B. 704, Nigeria
2 School of Earth and Mineral Science, Department of Marine Science and Technology, The Federal University of Technology Akure, P.M.B. 704, Nigeria
3 Faculty of Science, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark

Corresponding author

This study investigates the impact of varying biomass levels of Eichhornia crassipes (water hyacinth) and Pistia stratiotes (water lettuce) on the removal efficiency of nutrients, organic matter, and selected heavy metals from paint industry wastewater. The experiment was conducted using different biomass quantities of the aquatic plants to evaluate their phytoremediation capabilities. Changes in physicochemical parameters, nutrients, organic pollutants, and selected heavy metals were monitored over a 14-day period. At the end of week 1, water lettuce (WL) achieved removal efficiencies of 37.16%, 62.94%, and 38.47% for NO₃⁻, PO₄³⁻, and NH₃, respectively. Water hyacinth (WH) achieved removal efficiencies of 45.18%, 61.07%, and 45.86% for NO₃⁻, PO₄³⁻, and NH₃, respectively. Similarly, both plants significantly removed heavy metals, with WH achieving average removal efficiencies of 95.91%, 90.88%, and 67.68% for Cr, Pb, and Cu, respectively. WL achieved the highest average removal efficiencies of 90% and 88.9% for Zn and Cu, respectively. A statistically significant difference was observed among the biomass level treatments and heavy metal removal efficiencies (p < 0.05). The results indicate that both species effectively reduced nutrient, organic pollutant, and heavy metal concentrations, with higher biomass levels showing greater removal efficiencies. WH exhibited slightly better performance in removing all evaluated parameters in the wastewater treatment compared to WL. This study highlights the potential of these aquatic plants for phytoremediation applications in wastewater treatment systems. Optimization of biomass levels and operational conditions could enhance removal efficiencies and make the process more sustainable.

Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.1007/s11269-009-9571-6.

Viktoryová, N.; Szarka, A.; Hrouzková, S. (2022). Recent developments and emerging trends in paint industry wastewater treatment methods. Applied Sciences, 12(20), 10678. https://doi.org/10.3390/app122010678.

Okafor, U.C.; Orji, M.U.; Umeh, S.O.; Onuorah, S.C. (2022). Effects of effluents’ discharge from some paint industries on soil’s physicochemical properties and bioattenuation of polluted soil. Industrial and Domestic Waste Management, 2(2), 46–60. https://doi.org/10.53623/idwm.v2i2.110.

Nair, K.S.; Manu, B.; Azhoni, A. (2021). Sustainable treatment of paint industry wastewater: Current techniques and challenges. Journal of Environmental Management, 296, 113105. https://doi.org/10.1016/j.jenvman.2021.11310.

Pavón-Silva, T.; Pacheco-Salazar, V.; Sánchez-Meza, J.C.; Roa-Morales, G.; Colín-Cruz, A. (2018). Physicochemical and biological combined treatment applied to a food industry wastewater for reuse. Journal of Environmental Science and Health Part A, 44, 108–115. https://doi.org/10.1080/10934520802515467.

Ghobakhloo, S.; Khoshakhlagh, A.H.; Morais, S.; Mazaheri, T.A. (2023). Exposure to volatile organic compounds in paint production plants: Levels and potential human health risks. Toxic, 11(2), 111. https://doi.org/10.3390/toxics11020111.

Etsuyankpa, M.B.; Augustine, A.U.; Musa, S.T.; Mathew, J.T.; Ismail, H.; Salihu, A.M.; Mamman, A. (2024). An overview of wastewater characteristics, treatment and disposal: A review. Journal of Applied Science and Environmental Management, 28(5), 1553–1572. http://doi.org/10.4314/jasem.v28i5.28.

Kato, S.; Kansha, Y. (2024). Comprehensive review of industrial wastewater treatment techniques. Environmental Science and Pollution Research, 31, 51064–51097. https://doi.org/10.1007/s11356-024-34584-0.

Singh, B.J.; Chakraborty, A.; Sehgal, R. (2023). A systematic review of industrial wastewater management: Evaluating challenges and enablers. Journal of Environmental Management, 348, 119230. https://doi.org/10.1016/j.jenvman.2023.119230.

Paz-Alberto, A.M.; Sigua, G.C. (2013). Phytoremediation: A green technology to remove environmental pollutants. American Journal of Climate Change, 2, 71–86. https://doi.org/10.4236/ajcc.2013.21008.

Parveen, S.; Bhat, I.H.; Khanam, Z.; Rak, A.E.; Yusoff, M.H.; Akhter, M.S. (2021). Phytoremediation: In situ alternative for pollutant removal from contaminated natural media: A brief review. Biointerface Research in Applied Chemistry, 12(4), 4945–4960. https://doi.org/10.33263/BRIAC124.49454960.

Shmaefsky, B.R. (2020). Phytoremediations: In situ applications. In Principles of Phytoremediation, Concepts and Strategies in Plant Sciences; Springer Nature: Berlin, Germany.

Amalia, A.A.; Rahardja, B.S.; Triastuti, R.J. (2019). The use of water lettuce (Pistia stratiotesas) as phytoremediator for concentration and deposits of heavy metal lead (Pb) tilapia (Oreochromis niloticus) gills. IOP Conference Series: Earth and Environmental Science, 236, 012055. http://doi.org/10.1088/1755-1315/236/1/012055.

Rezania, S.; Md, D.M.; Mat, T.S.; Ling, Y. E. (2017). Beneficial environmentally usage of water hyacinth: A mini review. Recent Advances in Petrochemical Sciences, 1(5), 555575.

Singh, N.; Balomajumder, C. (2021). Phytoremediation potential of water hyacinth (Eichhornia crassipes) for phenol and cyanide elimination from synthetic/simulated wastewater. Applied Water Science, 11, 144. http://doi.org/10.1007/s13201-021-01472-8.

Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Wahab, N.A. (2018). Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. Journal of Water Process Engineering, 22, 239–249. https://doi.org/10.1016/j.jwpe.2018.02.011.

Huynh, A.T.; Chen, Y.C.; Tran, B.N.T. (2021). A small-scale study on removal of heavy metals from contaminated water using water hyacinth. Processes, 9, 1802. https://doi.org/10.3390/pr9101802.

Echiegbu, E. A.; Ezimah, C. O.; Okechukwu, M. E.; Nwoke, O. A. (2021). Phytoremediation of emulsion paint wastewater using Azolla pinnata, Eichhornia crassipes and Lemna minor. Nigerian Journal of Technology, 40(3), 550–557. http://doi.org/10.4314/njt.v40i3.21.

Kumar, S.; Deswal, S. (2020). Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. International Journal of Phytoremediation, 22(11), 1097–1109. https://doi.org/10.1080/15226514.2020.1731729.

Singh, J.; Vinod, K.; Pankaj, K.; Piyush, K.; Yadav, K.K.; Cabral-Pinto, M. .; Hesam, K.; Shreeshivadasan, C. (2021). An experimental investigation on phytoremediation performance of water lettuce (Pistia stratiotes L.) for pollutants removal from paper mill effluent. Water Environment Research, 21, 1–11. https://doi.org/10.1002/wer.1536.

Afolayan, G.O.; Amagon, K.I.; Amah, L.E.; Obadipe, T.O. (2019). Evaluation of Heavy Metals in Selected Paint Brands and Paint Chips from Old Buildings in Selected Local Government Areas in Lagos State, Nigeria. University of Lagos Journal of Basic Medical Sciences, 7, 1 & 2.

Tesfalem, B.W.; Abdrie, S.H. (2017). Toxicity Study of Heavy Metals Pollutants and Physico-Chemical Characterization of Effluents Collected from Different Paint Industries in Addis Ababa, Ethiopia. Journal of Forensic Sciences & Criminal Investigation, 5(5), 555685. https://doi.org/10.19080/JFSCI.2017.05.555685.

Qin, H.; Zhang, Z.; Liu, M.; Liu, H.; Wang, Y.; Wen, X.; Zhang, Y.; Yan, S. (2016). Site Test of Phytoremediation of an Open Pond Contaminated with Domestic Sewage Using Water Hyacinth and Water Lettuce. Ecological Engineering, 95, 753–762. https://doi.org/10.1016/j.ecoleng.2016.07.022.

Adelodun, A.A.; Olajire, T.; Afolabi, N.O.; Akinwumiju, A.S.; Akinbobola, E.; Hassan, O.U. (2021). Phytoremediation potentials of Eichhornia crassipes for nutrients and organic pollutants from textile wastewater. International Journal of Phytoremediation, 23, 1333–1341. https://doi.org/10.1080/15226514.2021.1895719.

Abinaya, S.; Saraswathi, R.; Rajamohan, S.; Mohammed, S. (2018). Phyto-remediation of total dissolved solids (TDS) by Eichhornia Crassipes, Pistia Stratiotes and Chrysopogon Zizanioides from second stage RO-Brine solution. Research Journal of Chemistry and Environment, 22(5), 36–41.

Madikizela, M.L. (2021). Removal of organic pollutants in water using water hyacinth (Eichhornia crassipes). Journal of Environmental Management, 295, 113153. https://doi.org/10.1016/j.jenvman.2021.113153.

Nguyen, V.N.; Huynh, V.T.; Nguyen, C.T.; Kim, L.; Pham, D.V. (2023). Water lettuce (Pistia stratiotes L.) increases biogas effluent pollutant removal efficacy and proves a positive substrate for renewable energy production. PeerJ, 11, 15879. https://doi.org/10.7717/peerj.15879.

Akinbile, C.O.; Yusoff, M.S. (2012). Assessing water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. International Journal of Phytoremediation, 14(3), 201–211. https://doi.org/10.1080/15226514.2011.587482.

Edaigbini, P.I.; Ogbeide, S.E.; Olafuyi, O.A. (2015). A Comparative Study of the Performance of Water Hyacinth (Eichhornia Crassipes) and Water Lettuce (Pistia Stratiotes) in the Remediation of Produced Water. Journal of Energy Technologies and Policy, 5, 3.

Nahar, K.; Hoque, S. (2021). Phytoremediation to improve eutrophic ecosystem by the floating aquatic macrophyte, water lettuce (Pistia stratiotes L.) at lab scale. Egyptian Journal of Aquatic Research, 47, 231–237. https://doi.org/10.1016/j.ejar.2021.05.003.

Saha, P.; Shinde, O.; Sarkar, S. (2017). Phytoremediation of industrial mines wastewater using water hyacinth. International Journal of Phytoremediation, 19, 87–96. https://doi.org/10.1080/15226514.2016.1216078.

Aniyikaiye, T.; Oluseyi, T.; Odiyo, J.; Edokpayi, J. (2019). Physico-Chemical Analysis of Wastewater Discharge from Selected Paint Industries in Lagos, Nigeria. International Journal of Environmental Research and Public Health, 16(7), 1–17. https://doi.org/10.3390/ijerph16071235.

Saravanathamizhan, R.; Perarasu, V.T. (2021). Improvement of Biodegradability Index of Industrial Wastewater Using Different Pretreatment Techniques. In Wastewater Treatment; Shah, M.P., Sarkar, A., Mandal,S., Eds.; Elsevier: Amsterdam, Netherlands, pp. 103–136. https://doi.org/10.1016/B978-0-12-821881-5.00006-4.

Kouamé, K.V.; Yapoga, S.; Kouadio, K.N.; Tidou, A.S.; Atsé, B.C. (2016). Phytoremediation of Wastewaters Toxicity Using Water Hyacinth (Eichhornia Crassipes) and Water Lettuce (Pistia Stratiotes). International Journal of Phytoremediation, 18, 949–955. https://doi.org/10.1080/15226514.2016.1183567.

Pierre, N.; Gouessé, H.B.; Nsavyimana, G.; Kopoin, A.; David, N.; Gaspard, N.; Reinert, L. (2020). Optimization of the phytoremediation conditions of wastewater in post-treatment by Eichhornia crassipes and Pistia stratiotes: Kinetic model for pollutants removal. Environmental Technology, 43, 1805–1818. https://doi.org/10.1080/09593330.2020.1852445.

Kinidi, L.; Salleh, S. (2017). Phytoremediation of nitrogen as green chemistry for wastewater treatment system. International Journal of Chemical Engineering, 2017, 1961205. https://doi.org/10.1155/2017/1961205.

Oh, Y.M.; Nelson, P.V.; Hesterberg, D.L.; Niedziela, C.E. (2016). Efficacy of a phosphate-charged soil material in supplying phosphate for plant growth in soilless root media. International Journal of Agronomy, 2016, 8296560. https://doi.org/10.1155/2016/8296560.

Tesser, T.T.; Bordin, J.; Da Rocha, C.M.; Da Silva, A. (2021). Application of the dry and wet biomass of bryophytes for phytoremediation of metals: Batch experiments. Environmental Challenges, 5, 100382. https://doi.org/10.1016/j.envc.2021.100382.

Ajibade, F.O.; Adeniran, K.A.; Egbuna, C.K. (2013). Phytoremediation Efficiencies of Water Hyacinth in Removing Heavy Metals in Domestic Sewage (A Case Study of University of Ilorin, Nigeria). The International Journal of Engineering and Science, 2(12), 16–27. http://doi.org/10.6084/m9.figshare.940965.

Nahar, K.; Hoque, S. (2021). Phytoremediation to improve eutrophic ecosystem by the floating aquatic macrophyte, water lettuce (Pistia stratiotes L.) at lab scale. Egyptian Journal of Aquatic Research, 47, 231–237. https://doi.org/10.1016/j.ejar.2021.05.003.

Bhat, S.A.; Bashir, O.; Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable, and multidisciplinary approach. Chemosphere, 303, 134788. https://doi.org/10.1016/j.chemosphere.2022.134788.

Alghamdi, S.A.; El-Zohri, M. (2024). Phytoremediation characterization of heavy metals by some native plants at anthropogenic polluted sites in Jeddah, Saudi Arabia. Resources, 13, 98. https://doi.org/10.3390/resources13070098.

Sompura, Y.; Bhardwaj, S.; Selwal, G.; Soni, V.; Ashokkumar, K. (2024). Unrevealing the potential of aquatic macrophytes for phytoremediation in heavy metal-polluted wastewater. Journal of Current Opinion in Crop Science, 5(1), 48–61. https://doi.org/10.62773/jcocs.v5i1.233.

About this article

SUBMITTED: 27 September 2024
ACCEPTED: 20 November 2024
PUBLISHED: 25 November 2024
SUBMITTED to ACCEPTED: 55 days
DOI: https://doi.org/10.53623/idwm.v4i2.501

Cite this article
Ajiboye, A. V., Badmos, B., Adelodun, A. A., & Babatola, J. O. (2024). Effect of Different Biomass Levels of Eichhornia crassipes and Pistia stratiotes on Nutrients, Organics, and Heavy Metals Removal from Wastewater. Industrial and Domestic Waste Management, 4(2), 118–131. https://doi.org/10.53623/idwm.v4i2.501
Accessed
96
Citations
0
Share this article