Skip to main content

Exploring the Potential of Composting for Bioremediation of Pesticides in Agricultural Sector

Author(s): Yu Yan Lau 1 , Erika Hernandes 2 , Risky Ayu Kristanti 3 , Yureana Wijayanti 4 , 5 , , Mehmet Emre 6
Author(s) information:
1 Faculty of Engineering and Science, Curtin University, CDT250, Miri 98009, Malaysia
2 Universidad Autónoma Agraria Antonio Narro, Saltillo, 25315, Coahuila, Mexico
3 Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
4 Civil Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia, 11480
5 Environmental Engineering, School of Engineering and Energy, Murdoch University, Western Australia, Australia
6 Faculty of Science, Dicle University, Diyarbakır, Turkey

Corresponding author

The rapid expansion of the human population has raised the chemical stress on the environment due to the increased demand of agricultural yields. The use of pesticides is the primary contributor to environmental chemical stress, which is essential for agricultural expansion in order to produce enough food to sustain the burgeoning human population. Pesticide residues in soil have grown to be a subject of rising concern as a result of their high soil retention and potential harm to unintended species. Diverse remediation strategies, such as physical, chemical, and biological, for limiting and getting rid of such contaminants have been put forth to deal with this problem. Bioremediation is one of these techniques, which has been deemed the best for reducing pollution because of its low environmental impact, simplicity of operation and construction. Microorganisms are implemented in this technique to break down and get rid of toxins in the environment or to reduce the toxicity of chemical compounds. This study thoroughly analyses the different composting soil remediation methods, including landfarming, biopiles, and windrows, to reduce and eliminate soil pollution. Although biological treatment is the best option for cleaning up polluted soil, it is still important to evaluate and review the approaches over the long term to determine whether they are effective in the field. It is because the reactivity of the microorganisms is highly dependent on environmental parameters, and the contemporary environment is characterised by unpredictable weather patterns, localised droughts, and temperature fluctuations.

Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148.

Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G. P. S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; Dar, O.I.; Singh, K.; Jasrotia, S.; Baksi, P.; Ramakrishnan, M.; Kumar, S.; Bhardwaj, R.; Thukral, A.K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1, 1‒16. https://doi.org/10.1007/s42452-019-1485-1.

Silva, V.; Mol, H.G.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. (2019). Pesticide residues in European agricultural soils–A hidden reality unfolded. Science of the Total Environment, 653, 1532‒1545. https://doi.org/10.1016/j.scitotenv.2018.10.441.

Joko, T.; Anggoro, S.; Sunoko, H. R.; Rachmawati, S. (2017). Pesticides usage in the soil quality degradation potential in Wanasari Subdistrict, Brebes, Indonesia. Applied and Environmental Soil Science, 2017, 5896191. https://doi.org/10.1155/2017/5896191.

Morillo, E.; Villaverde, J. (2017). Advanced technologies for the remediation of pesticide-contaminated soils. Science of the Total Environment, 586, 576‒597. https://doi.org/10.1016/j.scitetenv.2017.02.020.

Yañez-Ocampo, G.; Wong-Villarreal, A.; Del Aguila-Juarez, P.; Lugo-de la Fuente, J.; Vaca-Paulin, R. (2016). Composting of soils polluted with pesticides: A microbial approach and methods for monitoring. JSM Environmental Science & Ecology, 4, 1032.

Gustavsson, M.; Kreuger, J.; Bundschuh, M.; Backhaus, T. (2017). Pesticide mixtures in the Swedish streams: environmental risks, contributions of individual compounds and consequences of single-substance oriented risk mitigation. Science of the Total Environment, 598, 973‒983. https://doi.org/10.1016/j.scitotenv.2017.04.122.

Siddiqui, S. (2019). Pesticide Sources, Their Fate, and Different Ways to Impact Aquatic Organisms. In Handbook of Research on the Adverse Effects of Pesticide Pollution in Aquatic Ecosystems; Wani, K., Mamta, Eds.; IGI Global: Hershey, USA, pp. 20‒40. https://doi.org/10.4018/978-1-5225-6111-8.ch002h.

Intisar, A.; Ramzan, A.; Sawaira, T.; Kareem, A.T.; Hussain, N.; Din, M.I.; Bilal, M.; Iqbal, H.M. (2022). Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials–A review. Chemosphere, 293, 133538. https://doi.org/10.1016/j.chemosphere.2022.133538.

Münze, R.; Orlinskiy, P.; Gunold, R.; Paschke, A.; Kaske, O.; Beketov, M.A.; Hundt, M.; Bauer, C.; Schüürmann, G.; Möder, M.; Liess, M. (2015). Pesticide impact on aquatic invertebrates identified with Chemcatcher® passive samplers and the SPEARpesticides index. Science of the Total Environment, 537, 69‒80. https://doi.org/10.1016/j.scitotenv.2015.07.012.

Karas, P.; Metsoviti, A.; Zisis, V.; Ehaliotis, C.; Omirou, M.; Papadopoulou, E.S.; Menkissoglou-Spiroudi, U.; Manta, S.; Komiotis, D.; Karpouzas, D.G. (2015). Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: towards an optimized depuration of their pesticide-contaminated agro-industrial effluents. Science of the Total Environment, 530, 129‒139. https://doi.org/10.1016/j.scitotenv.2015.05.086.

O'geen, A. T.; Budd, R.; Gan, J.; Maynard, J.J.; Parikh, S.J.; Dahlgren, R.A. (2010). Mitigating nonpoint source pollution in agriculture with constructed and restored wetlands. Advances in Agronomy, 108, 1‒76. https://doi.org/10.1016/S0065-2113(10)08001-6.

Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2853‒2867. https://doi.org/10.1098/rstb.2010.0134.

Aliyeva, G.; Halsall, C.; Alasgarova, K.; Avazova, M.; Ibrahimov, Y.; Aghayeva, R. (2013). The legacy of persistent organic pollutants in Azerbaijan: an assessment of past use and current contamination. Environmental Science and Pollution Research, 20, 1993‒2008. https://doi.org/10.1007/s11356-012-1076-9.

Swinfield, T.; Afriandi, R.; Antoni, F.; Harrison, R.D. (2016). Accelerating tropical forest restoration through the selective removal of pioneer species. Forest Ecology and Management, 381, 209‒216. https://doi.org/10.1016/j.foreco.2016.09.020.

Scholtz, M.T.; Bidleman, T.F. (2007). Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues. Science of the Total Environment, 377, 61‒80. https://doi.org/10.1016/j.scitotenv.2007.01.084.

Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu,C.; Phung, D.T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental research and Public Health, 18, 1112. https://doi.org/10.3390/ijerph18031112.

Tcaciuc, A.P.; Borrelli, R.; Zaninetta, L.M.; Gschwend, P.M. (2018). Passive sampling of DDT, DDE and DDD in sediments: accounting for degradation processes with reaction–diffusion modeling. Environmental Science: Processes & Impacts, 20, 220‒231. https://doi.org/10.1039/C7EM00501F.

Han, D.M.; Tong, X.X.; Jin, M.G.; Hepburn, E.; Tong, C.S.; Song, X.F. (2013). Evaluation of organic contamination in urban groundwater surrounding a municipal landfill, Zhoukou, China. Environmental monitoring and assessment, 185, 3413‒3444. https://doi.org/10.1007/s10661-012-2801-z.

Su, W.; Hao, H.; Wu, R.; Xu, H.; Xue, F.; Lu, C. (2017). Degradation of mesotrione affected by environmental conditions. Bulletin of Environmental Contamination and Toxicology, 98, 212‒217. https://doi.org/10.1007/s00128-016-1970-9.

Quan, G.; Yin, C.; Chen, T.; Yan, J. (2015). Degradation of herbicide mesotrione in three soils with differing physicochemical properties from China. Journal of Environmental Quality, 44, 1631‒1637. https://doi.org/10.2134/jeq2014.12.0528.

Katagi, T. (2004). Photodegradation of Pesticides on Plant and Soil Surfaces. In Reviews of Environmental Contamination and Toxicology. Continuation of Residue Reviews, Ware, G.W. Ed.; Springer: New York, USA, Vol 182, pp. 1‒78. http://doi.org/10.1007/978-1-4419-9098-3_1.

Qin, F.; Gao, Y.X.; Guo, B.Y.; Xu, P.; Li, J. Z.; Wang, H.L. (2014). Environmental behavior of benalaxyl and furalaxyl enantiomers in agricultural soils. Journal of Environmental Science and Health, Part B, 49, 738‒746. https://doi.org/10.1080/03601234.2014.929482.

Durovic, R.; Gajic-Umiljendic, J.; Dordevic, T. (2009). Effects of organic matter and clay content in soil on pesticide adsorption processes. Pesticidi i Fitomedicina, 24, 51‒57. http://doi.org/10.2298/PIF0901051D.

Ochsner, T.E.; Stephens, B.M.; Koskinen, W.C.; Kookana, R.S. (2006). Sorption of a hydrophilic pesticide: Effects of soil water content. Soil Science Society of America Journal, 70, 1991‒1997. https://doi.org/10.2136/sssaj2006.0091.

Farghali, R.A.; Sobhi, M.; Gaber, S.E.; Ibrahim, H.; Elshehy, E.A. (2020). Adsorption of organochlorine pesticides on modified porous Al30/bentonite: kinetic and thermodynamic studies. Arabian Journal of Chemistry, 13, 6730‒6740. https://doi.org/10.1016/j.arabjc.2020.06.027.

Rasool, S.; Rasool, T.; Gani, K.M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/10.1016/j.ceja.2022.100301.

Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-Onazi, W.A.; Algarni, T,S.; Almarri, A,H.; Al-Mohaimeed, A.M. (2021). Pesticides in drinking water—a review. International Journal of Environmental Research and Public Health, 18, 468. http://doi.org/10.3390/ijerph18020468.

Pérez-Lucas, G.; Vela, N.; El Aatik, A.; Navarro, S.(2019). Environmental risk of groundwater pollution by pesticide leaching through the soil profile. IntechOpen: London, UK. http://doi.org/10.5772/intechopen.82418.

Bedos, C.; Cellier, P.; Calvet, R.; Barriuso, E.; Gabrielle, B. (2002). Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: overview. Agronomie, 22, 21‒33. http://doi.org/10.1016/S0045-6535(03)00594-0.

Schneider, M.; Endo, S.; Goss, K.U. (2013). Volatilization of pesticides from the bare soil surface: Evaluation of the humidity effect. Journal of Environmental Quality, 42, 844‒851. https://doi.org/10.2134/jeq2012.0320.

Kaur, T.; Sinha, A.K. (2019). Pesticides in agricultural run offs affecting water resources: a study of Punjab (India). Agricultural Sciences, 10, 1381. https://doi.org/10.4236/as.2019.1010101.

de Souza, R.M.; Seibert, D.; Quesada, H.B.; de Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. (2020). Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Safety and Environmental Protection, 135, 22‒37. https://doi.org/10.1016/j.psep.2019.12.035.

Sánchez-Bayo, F. (2011). Impacts of agricultural pesticides on terrestrial ecosystems. Ecological Impacts of Toxic Chemicals, 2011, 63‒87. http://doi.org/10.2174/978160805121210063.

Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. (2016). Effects of Pesticides on Environment. In Plant, Soil and Microbes, Hakeem, K., Akhtar, M., Abdullah, S., Eds.; Springer: Cham, Swirzerland, pp 253–269. https://doi.org/10.1007/978-3-319-27455-3_13.

Elliott, J. E.; Wilson, L. K.; Langelier, K. M.; Mineau, P.; Sinclair, P. H. (1997). Secondary poisoning of birds of prey by the organophosphorus insecticide, phorate. Ecotoxicology, 6, 219‒231. http://doi.org/10.1023/A:1018626811092.

Gibbons, D.; Morrissey, C.; Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22, 103‒118. https://doi.org/10.1007/s11356-014-3180-5.

Kumar, R.; Sankhla, M.S.; Kumar, R.; Sonone, S.S. (2021). Impact of pesticide toxicity in aquatic environment. Biointerface Research in Applied Chemistry, 11, 10131‒10140. https://doi.org/10.33263/BRIAC113.1013110140.

Maurya, P.K.; Malik, D.S.; Sharma, A. (2019). Impacts of pesticide application on aquatic environments and fish diversity. Contaminants in Agriculture and Environment: Health Risks and Remediation, 1, 111. http://doi.org/10.26832/AESA-2019-CAE-0162-09.

Khatib, I.; Rychter, P.; Falfushynska, H. (2022). Pesticide Pollution: Detrimental Outcomes and Possible Mechanisms of Fish Exposure to Common Organophosphates and Triazines. Journal of Xenobiotics, 12, 236‒265. https://doi.org/10.3390/jox12030018.

Rad, S.M.; Ray, A.K.; Barghi, S. (2022). Water Pollution and Agriculture Pesticide. Clean Technology, 4, 1088-1102. https://doi.org/10.3390/cleantechnol4040066.

Baweja, P.; Kumar, S.; Kumar, G. (2020). Fertilizers and pesticides: their impact on soil health and environment. In Soil Health, Giri, B., Varma, A., Eds.; Springer: Cham, Switzerland, Vol. 59, pp. 265‒285. https://doi.org/10.1007/978-3-030-44364-1_15.

Aydinalp, C.; Porca, M.M. (2004). The effects of pesticides in water resources. Journal of Central European Agriculture, 5, 5‒12.

Javaid, Z.; Ghazala; Ibrahim, M.; Mahmood, A.; Bajwa, A.A. (2023). Pesticide Contamination of Potable Water and Its Correlation with Water Quality in Different Regions of Punjab, Pakistan. Water, 15, 543. https://doi.org/10.3390/w15030543.

Kim, K.H.; Kabir, E.; Jahan, S.A. (2017). Exposure to pesticides and the associated human health effects. Science of the Total Environment, 575, 525‒535. https://doi.org/10.1016/j.scitotenv.2016.09.009.

Shah, R. (2020). Pesticides and Human Health. In Emerging Contaminants, Nuro, A., Ed.; IntechOpen: London, UK.

Ventura, C.; Venturino, A.; Miret, N.; Randi, A.; Rivera, E.; Núñez, M.; Cocca, C. (2015). Chlorpyrifos inhibits cell proliferation through ERK1/2 phosphorylation in breast cancer cell lines. Chemosphere, 120, 343‒350. https://doi.org/10.1016/j.chemosphere.2014.07.088.

Ortega Jacome, G.P.; Koifman, R.J.; Rego Monteiro, G.T.; Koifman, S. (2010). Environmental exposure and breast cancer among young women in Rio de Janeiro, Brazil. Journal of Toxicology and Environmental Health, Part A, 73, 858‒865. https://doi.org/10.1080/15287391003744773.

He, J.R.; Ramakrishnan, R.; Hirst, J.E.; Bonaventure, A.; Francis, S.S.; Paltiel, O.; Haberg, S.E.; Lemeshow, S.; Olsen, S.; Tikellis, G.; Magnus, P.; Murphy, M.F.G.; Wiemels, J.L.; Linet, M.S.; Dwyer, T (2020). Maternal infection in pregnancy and childhood leukemia: a systematic review and meta-analysis. The Journal of pediatrics, 217, 98‒109. https://doi.org/10.1016%2Fj.jpeds.2019.10.046.

Frazier, L. M. (2007). Reproductive disorders associated with pesticide exposure. Journal of agromedicine, 12, 27‒37. https://doi.org/10.1300/J096v12n01_04.

Michalakis, M.; Tzatzarakis, M. N.; Kovatsi, L.; Alegakis, A.K.; Tsakalof, A.K.; Heretis, I.; Tsatsakis, A. (2014). Hypospadias in offspring is associated with chronic exposure of parents to organophosphate and organochlorine pesticides. Toxicology letters, 230, 139‒145. https://doi.org/10.1016/j.toxlet.2013.10.015.

Rescia, M.; Mantovani, A. (2007). Pesticides as Endocrine Disrupters: Identification of Hazards for female reproductive function. In Reproductive health and the environment, Nicolopoulou-Stamati, P., Hens, L., Howard, C., Eds.; Springer: Dordrecht, Netherland. Vol. 22, pp. 227‒248. https://doi.org/10.1007/1-4020-4829-7_11.

Tsaloglidou, A. (2019). The effects of pesticides on respiratory system. Progress in Health Sciences, 2, 48‒52. http://doi.org/10.5604/01.3001.0013.7226.

Tarmure, S.; Alexescu, T.G.; Orasan, O.; Negrean, V.; Sitar-Taut, A.V.; Coste, S.C.; Todea, D.A. (2020). Influence of pesticides on respiratory pathology-a literature review. Annals of Agricultural and Environmental Medicine, 27, 194–200. http://doi.org/10.26444/aaem/121899.

Amaral, A. F. (2014). Pesticides and asthma: challenges for epidemiology. Frontiers in Public Health, 2, 6. https://doi.org/10.3389%2Ffpubh.2014.00006.

Semple, K.T.; Reid, B.J.; Fermor, T.R. (2001). Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution, 112, 269‒283. https://doi.org/10.1016/S0269-7491(00)00099-3.

Geng, C.; Haudin, C.S.; Zhang, Y.; Lashermes, G.; Houot, S.; Garnier, P. (2015). Modeling the release of organic contaminants during compost decomposition in soil. Chemosphere, 119, 423‒431. https://doi.org/10.1016/j.chemosphere.2014.06.090.

Waqas, M.; Hashim, S.; Humphries, U.W.; Ahmad, S.; Noor, R.; Shoaib, M.; Naseem, A.; Hlaing, P.T.; Lin, H.A. (2023). Composting Processes for Agricultural Waste Management: A Comprehensive Review. Processes, 11, 731. https://doi.org/10.3390/pr11030731.

Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 1‒18. https://doi.org/10.1007/s11274-016-2137-x.

Silva-Castro, G.A.; Uad, I.; Rodríguez-Calvo, A.; González-López, J.; Calvo, C. (2015). Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environmental Research, 137, 49‒58. https://doi.org/10.1016/j.envres.2014.11.009.

Raffa, C.M.; Chiampo, F. (2021). Bioremediation of agricultural soils polluted with pesticides: A review. Bioengineering, 8, 92. https://doi.org/10.3390/bioengineering8070092.

Maila, M. P.; Cloete, T.E. (2004). Bioremediation of petroleum hydrocarbons through landfarming: are simplicity and cost-effectiveness the only advantages?. Reviews in Environmental Science and Bio/Technology, 3, 349‒360. https://doi.org/10.1007/s11157-004-6653-z.

Whelan, M.J.; Coulon, F.; Hince, G.; Rayner, J.; McWatters, R.; Spedding, T.; Snape, I. (2015). Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere, 131, 232‒240. https://doi.org/10.1016/j.chemosphere.2014.10.088.

Sales da Silva, I. G.; Gomes de Almeida, F. C.; Padilha da Rocha e Silva, N. M.; Casazza, A. A.; Converti, A.; Asfora Sarubbo, L. (2020). Soil bioremediation: Overview of technologies and trends. Energies, 13, 4664. https://doi.org/10.3390/en13184664.

Aislabie, J.; Saul, D.J.; Foght, J.M. (2006). Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles, 10, 171‒179. https://doi.org/10.1007/s00792-005-0498-4.

Sanscartier, D.; Zeeb, B.; Koch, I.; Reimer, K. (2009). Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Regions Science and Technology, 55, 167‒173. https://doi.org/10.1016/j.coldregions.2008.07.004.

Maitra, S. (2018). Ex situ bioremediation–an overview. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 4, 422‒437. https://doi.org/10.26479/2018.0406.34.

Barr, D.; Finnamore, J.R.; Bardos, R.P.; Weeks, J.M.; Nathanail, C.P. (2019). Biological methods for assessment and remediation of contaminated land: case studies. Construction Industry Research and Information Association: London, UK.

Tiquia, S.M.; Richard, T.L.; Honeyman, M.S. (2000). Effect of windrow turning and seasonal temperatures on composting of hog manure from hoop structures. Environmental Technology, 21, 1037‒1046. https://doi.org/10.1080/09593332108618048.

Coulon, F.; Al Awadi, M.; Cowie, W.; Mardlin, D.; Pollard, S.; Cunningham, C.; Risdon, G.; Arthur, P.; Semple, K.T.; Paton, G.I. (2010). When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environmental Pollution, 158, 3032‒3040. https://doi.org/10.1016/j.envpol.2010.06.001.

Hobson, A.M.; Frederickson, J.; Dise, N.B. (2005). CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Management, 25, 345‒352. https://doi.org/10.1016/j.wasman.2005.02.015.

Chen, M.; Xu, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnology Advances, 33, 745‒755. http://doi.org/10.1016/j.biotechadv.2015.05.003.

Cara, I.G.; Țopa, D.; Puiu, I.; Jităreanu, G. (2022). Biochar a Promising Strategy for Pesticide-Contaminated Soils. Agriculture, 12, 1579. https://doi.org/10.3390/agriculture12101579.

Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. (2021). Pesticides: formulants, distribution pathways and effects on human health–a review. Toxicology Reports, 8, 1179‒1192. https://doi.org/10.1016/j.toxrep.2021.06.004.

About this article

SUBMITTED: 15 April 2023
ACCEPTED: 20 May 2023
PUBLISHED: 22 May 2023
SUBMITTED to ACCEPTED: 36 days
DOI: https://doi.org/10.53623/idwm.v3i1.245

Cite this article
Lau, Y. Y. ., Hernandes, E. ., Kristanti, R. A. ., Wijayanti, Y. ., & Emre, M. (2023). Exploring the Potential of Composting for Bioremediation of Pesticides in Agricultural Sector. Industrial and Domestic Waste Management, 3(1), 47–66. https://doi.org/10.53623/idwm.v3i1.245
Keywords
Accessed
774
Citations
0
Share this article