This research aimed to investigate how combining process variables affects biogas production from anaerobic digestion of food waste and rumen contents. A mixture design was used to evaluate the effects of temperature, pH, agitation frequency, and retention time on biogas quantity and quality. Anaerobic mono-digestion and co-digestion were performed using 2 liter single-stage plastic anaerobic digesters. Cumulative biogas volume and its composition, including carbon dioxide, hydrogen sulphide, moisture, and methane content, were estimated volumetrically. The highest biogas volume and quality were obtained under the following conditions: food waste (0.30 kg), rumen content (0.30 kg), water content (0.40 kg), temperature (34.0° C), pH (9.0), agitation frequency (4 times/day), and retention time (32 days). Combining process variables can significantly impact biogas quantity and quality, and optimal process parameters vary depending on the substrate and operational conditions. Anaerobic digestion can effectively manage organic waste, produce renewable energy, and mitigate greenhouse gases.
Li, X.; Wang, Q.; Zhang, L.; He, P. (2022). Biogas production from food waste: a comprehensive review. Bioresource Technology, 346, 126565. http://doi.org/10.1016/j.biotech.2022.125565.
De Clercq, D.; Ceuppens, S.; Heylen, K.; Van Hulle, S.W. (2021). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 329, 124892. https://doi.org/10.1016/j.biortech.2021.124892.
Li, Y.; Ni, J.;Cheng, H.; Zhu, A.; Guo, G.; Qin, Y.; Li, Y. (2021). Methanogeni performance and microbial community during thermphilic digestion of food waste and sewage sludge in a high-solid anaerobic membrane bioreactor. Bioresource Technology, 342, 125938. http://doi.org/10.1016/j.biotech.2021.125938
Nazir, S.; Raza, A.; Iqbal, M.; Ahmad, A. (2021). Anaerobic digestion of rumen content for biogas production: A comprehensive review. Journal of Environmental Management, 293, 112914. http://doi.org/10.1016/j.jenvman.2021.112914.
Singh, G.; Prasad, R.; Singh, B.K.; Guldhe, A. (2021). Biogas production from organic waste: A review. Journal of Cleaner Production, 308, 127137. http://doi.org/10.1016/j.jclepro.2021.127137.
Lashari, S.; Abbasi, S.A.; Abbasi, F.; Ali, S.; Sherazi, S.T.H.; Sarwar, M.I. (2021). Effect of temperature on the biogas yield and quality from anaerobic co-digestion of cattle manure and kitchen waste. Renewable Energy, 173, 4856. http://doi.org/10.1016/j.renene.2021.03.103.
Wang, X.; Liu, Y.; Liu, X.; Ma, J.; Wang, Z.; Zhang, S. (2021). Impact of agitation intensity on the performance of anaerobic digestion of food waste. Energy Conversion and Management, 246, 114353. http://doi.org/10.1016/j.enconman.2021.114353.
Ng, W.J.; Lee, L.Y.; Toh, W.S.; Loh, K.C.; Lee, D.J. (2020). Effect of pH on the production of biogas from food waste in anaerobic digestion. Journal of Environmental Management, 255, 109931. http://doi.org/10.1016/j.jenvman.2019.109931.
Han, Q.; Li, L.; Li, Y.; Li, Z.; Yan, X.; Wang, Q.; Li, S. (2021). Effects of hydraulic retention time on biogas production from cow manure and kitchen waste: Performance and microbial community analysis. Bioresource Technology, 331, 125054. http://doi.org/10.1016/j.biortech.2021.125054.
Cheng, J.; Zhang, Y.; Li, X.; Zuo, W. (2021). Optimal pH range for biogas production from food waste: A comprehensive study. Energy Conversion and Management, 242, 114314. http://doi.org/10.1016/j.enconman.2021.114314.
Luo, M.; Li, Y.; Xie, B.; Huang, L.; Yang, X. (2021). Effect of organic loading rate on anaerobic digestion of food waste for biogas production: Performance and microbial community analysis. Bioresource Technology, 337, 125529. http://doi.org/10.1016/j.biortech.2021.125529.
Huang, L.; Li, Y.; Luo, M.; Xie B, Yang X (2021). Co-digestion of food waste and pig manure for biogas production: Influence of mixing ratio on methane yield and microbial community. Bioresource Technology, 330, 124934. http://doi.org/10.1016/j.biortech.2021.124934.
Zhang, R.; Chen, S.; Zou, X.; Wang, S.; Liu, Z.; Xie, L. (2021). The effects of food waste-to-dairy manure ratio on anaerobic digestion: Biogas production, substrate utilization, and microbial community. Bioresource Technology, 330, 124934. http://doi.org/10.1016/j.biortech.2021.124934.
Zou, L.; Fu, W.; Chen, Y.; Lin, H.; Chen, H. (2021). Co-digestion of food waste and cow manure for biogas production: Effect of mixing ratio and microbial community analysis. Energy, 225, 120197. http://doi.org/10.1016/j.energy.2021.120197.
Song, C.; Zhang, X.; Wang, Y.; Liu, X.; Yan, S.; Sun, X. (2020). Effect of inoculum type on the anaerobic digestion of food waste: Performance, microbial community and enzyme activities. Journal of Environmental Management, 260, 110141. http://doi.org/10.1016/j.jenvman.2020.110141.
Jeong, S.; Park, S.; Kim, J.; Kim, S.; Kim, S. (2019). Effect of agitation on anaerobic digestion of rumen contents for methane production. Environmental Engineering Research, 24, 236241. http://doi.org/10.4491/eer.2018.278.
Wu, Y.; Yang, G.; Zhang, L.; Liu, J.; Sun, Y. (2021). Effect of agitation speed on biogas production and microbial community of anaerobic digestion of food waste. Science of the Total Environment, 759, 143529. http://doi.org/10.1016/j.scitotenv.2020.143529.
Amoo, A.O.; Ahmed, S.; Haruna, A. (2023). Combinatorial Effect of Process Parameters on the Rate of Biogas Production and Rate of Substrate Degradation Following Anaerobic Digestion of Food Waste and Rumen Content. Journal of Applied Science and Environmental Management, 27, 449455. http://doi.org/10.4314/jasem.v27i3.8.
Ogbonna, C.B.; Stanley, H.O.; Abu, G.O. (2018). Effect of Seasonal Variation on Anaerobic Treatment of Organic Municipal Solid Waste-II: Population Dynamics of Bacteria and Archaea Communities. Applied Microbiology Open Access, 4, 311. http://doi.org/10.4172/2471-9315.1000149.
Pramanik, B.K.; Lohani, B.N. (2021). Microbial analysis of organic waste for biogas production. Waste Management & Research, 39, 136143. http://doi.org/10.1177/0734242X20949385.
Yu, L.; Xie, S.; Liu, H.; Liu, X.; Lu, Y.; Zheng, X. (2021). Microbial community structure and functional prediction of anaerobic digestion of sewage sludge with different ratios of kitchen waste. Bioresource Technology, 328, 124950. http://doi.org/10.1016/j.biortech.2021.124950.
Dwivedi, P.; Khanna, S. (2019). Composition and analysis of biogas: A review. Renewable and Sustainable Energy Reviews, 101, 182192. http://doi.org/10.1016/j.rser.2019.01.012.
Kudahettige-Nilsson, R.L.; Costa, J.C.; Taherzadeh, M.J. (2020). Biogas production from food waste: State-of-the-art and recent developments. Energies, 13, 3217. http://doi.org/10.3390/en13123217.
Haque, M.A.; Azim, M.A.; Ali, M.E.; Islam, M.A. (2016). Optimization of anaerobic digestion process parameters for biogas production from food waste. Waste Management, 57, 176182. http://doi.org/10.1016/j.wasman.2016.08.022.
de Araújo, F.O.; de Oliveira, A.R.; de Almeida, R.M.; de Souza, F.C.; Pereira, D. (2015). Biogas production from anaerobic co-digestion of pig manure and cassava peels. Energy Procedia, 70, 332337. http://doi.org/10.1016/j.egypro.2015.02.130.
Bressani, L.A.S.; Soares, R.C.; Daniel, L.A. (2019). The effects of organic loading rate and hydraulic retention time on carbon dioxide emissions from anaerobic reactors. Chemical Engineering Transactions, 74, 235240. http://doi.org/10.3303/CET1974040.
Cuetos, M.J.; Gómez, X.; Otero, M.; Moran, A. (2018). Assessment of the carbon footprint of different types of anaerobic digestion plants. Journal of Cleaner Production, 177, 156163. ttp://doi.org/10.1016/j.jclepro.2017.12.171.
Zhang, Y.; Banks, C.J.; Heaven, S. (2019). Substrate characteristics and process parameters influencing biogas yield and quality. Renewable and Sustainable Energy Reviews, 111, 157167. http://doi.org/10.1016/j.rser.2019.05.028.
Zhang, L.; Lee, D.J.; Jahng, D. (2015). Enhanced methane production from cattle manure with temperature phased two-stage anaerobic digestion. Bioresource technology, 181, 177183. http://doi.org/10.1016/j.biortech.2015.01.089.
Liu, C.; Sun, F.; Zhang, R.; Wang, Z.; Jin, J. (2019). Co-digestion of food waste and cow manure for methane production: A review of operating parameters and process stability. Renewable and Sustainable Energy Reviews, 112, 716727. http://doi.org/10.1016/j.rser.2019.05.039.
Li, R.; Liu, Y.; Hu, X.; Li, Y.; Zhang, L.; Li, X. (2020). Co-digestion of food waste and swine manure for methane production: Effect of feedstock ratio and organic loading rate. Journal of Environmental Management, 258, 110012. http://doi.org/10.1016/j.jenvman.2019.109812.
Liu Q, Duan N, Wang Z, Wei Y (2019). Co-digestion of cow dung and corn stover for biogas production: effects of inoculum source and mixing ratio. Journal of Cleaner Production, 237, 117648. http://doi.org/10.1016/j.jclepro.2019.117648.
Ma, J.; Zhang, Q.; Li, W.; Li, J.; Li, Y.; Wei, Y.; Yan, L. (2020). Comparative analysis of the performance of anaerobic digestion of corn straw with different inoculum sources: Biogas production rate and quality. Bioresource Technology, 300, 122721. http://doi.org/10.1016/j.biortech.2019.122721.
SUBMITTED: 31 January 2023
ACCEPTED: 07 April 2023
PUBLISHED:
9 April 2023
SUBMITTED to ACCEPTED: 67 days
DOI:
https://doi.org/10.53623/idwm.v3i1.196