Skip to main content

Biosorption of Synthetic Dye by Macrofungi

Author(s): Kek Kin Lee 1 , 2 , , Risky Ayu Kristanti 3 , Arma Yulisa 4 , Rubiyatno 5 , Fitria Ningsih 6 , 7 , , Muhammad Syafrudin 8 , Erika Hernandes 9 , Mihaela Albescu 10
Author(s) information:
1 Canadian Solar Manufacturing Thailand Ltd, Tabuan Desa Lorong Keranji 4F5, 93350, Kuching, Sarawak, Malaysia
2 Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, CDT250, Miri 98009, Malaysia.
3 Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih I, Jakarta 14430, Indonesia.
4 Division Environmental Science and Engineering, Pohang University of Science and Technology, Gyeongbuk, Republic of Korea.
5 Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Yamanashi 400-8511, Japan.
6 Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
7 Center of Excellence for Indigenous Biological Resources-Genome Studies, Faculty of Mathematics and Natural Sciences Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia.
8 Department of Artificial Intelligence, Sejong University, Seoul 05006, Korea.
9 Universidad Autónoma Agraria Antonio Narro, Saltillo, 25315, Coahuila, Mexico.
10 Science Faculty, University of Craiova, Craiova, 200585, Romania.

Corresponding author

This research project aimed to provide an environmentally friendly method for the decolorization and biosorption of synthetic dye by utilizing fungi as biosorbents. The study was carried out by first growing the fungi in solid medium and then using the fungi as biosorbent to absorb dye in aqueous solution. In the first stage, screening experiments were carried out among 5 different types of fungi, and Pleurotus ostreatus was determined to have the highest growth rate. The Pleurotus ostreatus was recultivated with Remazol Brilliant Blue R dye to determine its dye removal ability. Pleurotus ostreatus sp. exhibited vigorous dye decolorization in agar medium within 2 days. By carrying out batch analysis, 4 parameters were examined, which were the effect of pH, surfactant concentration (Tween 80), salinity concentration and dosage of biosorbent. The results showed that the maximum dye decolourization by Pleurotus ostreatus can be achieved through establishing an acidic condition of pH 2, addition of 0.1mL of Tween 80, 0mg/l of sodium chloride concentration, and dosage of 8 plugs. Lastly, the experimental data was found to fit the Jovanovic Isotherm the most. In conclusion, Pleurotus ostreatus is capable of decolourizing and adsorbing dye particles in the dye aqueous solution.
Next article

Pica, M. (2021). Treatment of Wastewaters with Zirconium Phosphate Based Materials: A Review on Efficient Systems for the Removal of Heavy Metal and Dye Water Pollutants. Molecules, 26(8), 2392. https://doi.org/10.3390/molecules26082392.

Oyarce, E.; Roa, K.; Boulett, A.; Sotelo, S.; Cantero-López, P.; Sánchez, J.; Rivas, B. (2021). Removal of Dyes by Polymer-Enhanced Ultrafiltration: An Overview. Polymers, 13(19), 3450. https://doi.org/10.3390/polym13193450.

Lara, L.; Cabral, I.; Cunha, J. (2022). Ecological Approaches to Textile Dyeing: A Review. Sustainability, 14(14), 8353. https://doi.org/10.3390/su14148353.

Legorreta-Castañeda, A.; Lucho-Constantino, C.; Beltrán-Hernández, R.; Coronel-Olivares, C.; Vázquez-Rodríguez, G. (2020). Biosorption of Water Pollutants by Fungal Pellets. Water, 12(4), 1155. https://doi.org/10.3390/w12041155.

Hadibarata, T.; Yuniarto, A. (2020). Biodegradation of polycyclic aromatic hydrocarbons by high-laccase basidiomycetes fungi isolated from tropical forest of Borneo. Biocatalysis and Agricultural Biotechnology, 28, 101717. https://doi.org/10.1016/j.bcab.2020.101717.

Gómez-Aguilar, D.; Rodríguez-Miranda, J.; Salcedo-Parra, O. (2022). Fruit Peels as a Sustainable Waste for the Biosorption of Heavy Metals in Wastewater: A Review. Molecules, 27(7), 2124. https://doi.org/10.3390/molecules27072124.

Basu, A.; Ali, S.; Hossain, S.; Asif, M. (2022). A Review of the Dynamic Mathematical Modeling of Heavy Metal Removal with the Biosorption Process. Processes, 10(6), 1154. https://doi.org/10.3390/pr10061154.

Eldeeb, T.M.; Aigbe, U.O.; Ukhurebor, K.E; Onyancha R.B.; El-Nemr, M.A.; Hassaan, M.A.; Ragb, S.; Osibote, O.A.; El Nemr, A. (2022). Adsorption of methylene blue (MB) dye on ozone, purified and sonicated sawdust biochars. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03015-w.

Eldeeb, T.M.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha R.B.; El-Nemr, M.A.; Hassaan, M.A.; Osibote, O.A.; Ragb, S. et al. (2022). A.Biosorption of acid brown 14 dye to mandarin-CO-TETA derived from mandarin peels. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02664-1.

Sudarni, D.H.A.; Aigbe, O.A.; Ukhurebor, K.E.; Onyancha, R.B.; Kusuma, H.S.; Darmokoesoemo, H. et al. (2021). Malachite Green Removal by Activated Potassium Hydroxide Clove Leaf Agrowaste Biosorbent: Characterization, Kinetic, Isotherm, and Thermodynamic Studies. Adsorption Science & Technology, 2021, 1145312. https://doi.org/10.1155/2021/1145312.

Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Osibote, O.A.; Darmokoesoemo, H.; Kusuma, H.S. (2021). Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review, Journal of Materials Research and Technology, 14, 2751-2774. https://doi.org/10.1016/j.jmrt.2021.07.140.

Xia, L.; Xu, X.; Zhu, W.; Huang, Q.; Chen, W. A Comparative Study on the Biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. International Journal of Molecular Science, 16(7), 15670-15687. https://doi.org/10.3390/ijms160715670.

Muñoz, A.; Espínola, F.; Ruiz, E.; Barbosa-Dekker, A.; Dekker, R.; Castro, E. (2019). Assessment of By-Product from Botryosphaeria rhodina MAMB-05 as an Effective Biosorbent of Pb(II). Molecules, 24(18), 3306. https://doi.org/10.3390/molecules24183306.

Nam, I.; Murugesan, K.; Ryu, J.; Kim, J. (2019). Arsenic (As) Removal Using Talaromyces sp. KM-31 Isolated from As-Contaminated Mine Soil. Minerals, 9(10), 568. https://doi.org/10.3390/min9100568.

Pandharikar, G.; Claudien, K.; Rose, C.; Billet, D.; Pollier, B.; Deveau, A.; Besserer, A.; Morel-Rouhier, M. (2022). Comparative Copper Resistance Strategies of Rhodonia placenta and Phanerochaete chrysosporium in a Copper/Azole-Treated Wood Microcosm. Journal of Fungi 8(7), 706. https://doi.org/10.3390/jof8070706.

Ishak, Z.; Salim, S.; Kumar, D. (2021). Adsorption of Methylene Blue and Reactive Black 5 by Activated Carbon Derived from Tamarind Seeds. Tropical Aquatic and Soil Pollution, 2(1), 1–12. https://doi.org/10.53623/tasp.v2i1.26.

Tang, K.H,D.; Darwish, N.M.; Alkahtani, A.M.; AbdelGawwad, M.R.; Karácsony, P. (2022). Biological Removal of Dyes from Wastewater: A Review of Its Efficiency and Advances. Tropical Aquatic and Soil Pollution, 2(1), 59–75. https://doi.org/10.53623/tasp.v2i1.72.

Wu, J.; Xia, A.; Chen, C.; Feng, L.; Su, X.; Wang, X. (2019). Adsorption Thermodynamics and Dynamics of Three Typical Dyes onto Bio-adsorbent Spent Substrate of Pleurotus eryngii. International Journal of Environmental Research of Public Health, 16(5), 679. https://doi.org/10.3390/ijerph16050679.

Blaga, A.; Tanasă, A.; Cimpoesu, R.; Tataru-Farmus, R.; Suteu, D. Biosorbents Based on Biopolymers from Natural Sources and Food Waste to Retain the Methylene Blue Dye from the Aqueous Medium. Polymers 2022, 14(13), 2728; https://doi.org/10.3390/polym14132728.

Rusu, L.; Grigoraș, C.; Simion, A.; Suceveanu, E.; Istrate, B.; Harja, M. (2022). Biosorption Potential of Microbial and Residual Biomass of Saccharomyces pastorianus Immobilized in Calcium Alginate Matrix for Pharmaceuticals Removal from Aqueous Solutions. Polymers, 14(14), 2855. https://doi.org/10.3390/polym14142855.

Bankole, P.O.; Adekunle, A.A.; Govindwarc, S.P. (2018). Enhanceddecolorization and biodegradation of acid red 88 dye by newly isolated fungus, Achaetomium strumarium. Journal of Environmental Chemical Engineering, 6, 1589-1600. https://doi.org/10.1016/j.jece.2018.01.069.

Ortiz-Monsalvea, S.; Dornellesa, J.; Poll, E.; Ramirez-Castrillón, M.; Valentec, P.; Gutterresa, M. (2017). Biodecolourisation and biodegradation of leather dyes by by a native isolate of Trametes villosa. Process Safety and Environmental Protection, 109, 437–451. https://doi.org/10.1016/j.psep.2017.04.028.

Adnan, L.A.; Sathishkumar, P.; Yusoff, A.R.M.; Hadibarata, T.; Ameen, F. (2017). Rapid bioremediation of Alizarin Red S and Quinizarine Green SS dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes. Bioprocess and Biosystem Engineering, 40, 85-97. https://doi.org/10.1007/s00449-016-1677-7.

Mostafa, A.A.; Al-Askar, A.A.; Elshikh, M.S.; Hadibarata, T.; Yuniarto, A.; Syafiuddin A. (2019) Decolorization and Biotransformation Pathway of Textile Dye by Cylindrocephalum aurelium. Bioprocess and Biosystem Engineering, 42(9), 1483-1494. https://doi.org/10.1007/s00449-019-02144-3.

Wirasnita, R.; Hadibarata, T. (2016). Potential of a white-rot fungus Pleurotus Pulmonarius F043 for degradation and transformation of fluoranthene. Phedosphere 26(1), 49–54. https://doi.org/10.1016/S1002-0160(15)60021-2.

Nor, N.M.; Hadibarata, T.; Zubir, M.M.F.A.; Lazim, Z.M.; Adnan, L.A.l Fulazzaky, M.A. (2015) Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06. Bioprocess and Biosystem Engineering. 38(11):2167–2175. https://doi.org/10.1007/s00449-015-1456-x.

Diakonova, A.N.; Khrushchev, S.S.; Kovalenko, I.B.; Yu Riznichenko, G.; Rubin, A.B. (2016). Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction. Physical Biology, 13, 056004. https://doi.org/10.1088/1478-3975/13/5/056004.

Aksu, Z.; Balibek, E. (2010). Effect of salinity on metal-complex dye biosorption by Rhizopus arrhizus. Journal of Environmental Management, 91, 1546-1555. https://doi.org/10.1016/j.jenvman.2010.02.026.

Farouq, R.; Yousef, N.S. (2015). Equilibrium and Kinetics Studies of adsorption of Copper (II) ions on on Natural Biosorbent. International Journal of Chemical Engineering and Applications, 6, 319-324. http://doi.org/10.7763/IJCEA.2015.V6.503.

Kabbouta, R.; Taha, S. (2014). Biodecolorization of textile dye effluent by biosorption on fungal biomass materials. Physic Procedia, 55, 437-444. https://doi.org/10.1016/j.phpro.2014.07.063.

About this article

SUBMITTED: 17 August 2022
ACCEPTED: 09 October 2022
PUBLISHED: 11 October 2022
SUBMITTED to ACCEPTED: 54 days
DOI: https://doi.org/10.53623/idwm.v2i2.108

Cite this article
Lee, K. K. ., Kristanti, R. A. ., Yulisa, A. ., Rubiyatno, Ningsih, F. ., Syafrudin, M. ., Hernandes, E. ., & Albescu, M. . (2022). Biosorption of Synthetic Dye by Macrofungi. Industrial and Domestic Waste Management, 2(2), 61–70. https://doi.org/10.53623/idwm.v2i2.108
Keywords
Accessed
753
Citations
0
Share this article