Skip to main content

Effectiveness of Using Artificial Intelligence for Early Child Development Screening

Author(s): Michael-Lian Gau 1 , Huong-Yong Ting 1 , Teck-Hock Toh 2 , Pui-Ying Wong 3 , Pei-Jun Woo 3 , Su-Woan Wo 3 , Gek-Ling Tan 4
Author(s) information:
1 Design and Technology Centre, University of Technology Sarawak, No. 1, Jalan Universiti, 96000 Sibu, Sarawak, Malaysia
2 Clinical Research Centre & Department of Paediatrics, Sibu Hospital, Ministry of Health Malaysia, Batu 5½, Jalan Ulu Oya, 96000 Sibu, Sarawak, Malaysia
3 Department of Psychology, School of Medical Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
4 Spark Child Development Centre, B3, Jalan Teknologi 2/1B, Signature Park, 47810 Kota Damansara, Petaling Jaya, Selangor Darul Ehsan, Malaysia

Corresponding author

This study presents a novel approach to recognizing emotions in infants using machine learning models. To address the lack of infant-specific datasets, a custom dataset of infants' faces was created by extracting images from the AffectNet dataset. The dataset was then used to train various machine learning models with different parameters. The best-performing model was evaluated on the City Infant Faces dataset. The proposed deep learning model achieved an accuracy of 94.63% in recognizing positive, negative, and neutral facial expressions. These results provide a benchmark for the performance of machine learning models in infant emotion recognition and suggest potential applications in developing emotion-sensitive technologies for infants. This study fills a gap in the literature on emotion recognition, which has largely focused on adults or children and highlights the importance of developing infant-specific datasets and evaluating different parameters to achieve accurate results.

Next article

Hadders-Algra, M. (2021). Early diagnostics and early intervention in neurodevelopmental disorders—age-dependent challenges and opportunities. Journal of Clinical Medicine, 10, 861. https://doi.org/10.3390/jcm10040861.

Lipkin, P.H.; Macias, M.M.; Norwood, K.W.; Brei, T.J.; Davidson, L.F.; Davis, B.E.; Voigt, R.G. (2020). Promoting optimal development: identifying infants and young children with developmental disorders through developmental surveillance and screening. Pediatrics, 145, e20193449. https://doi.org/10.1542/peds.2019-3449.

Silver, H.C.; Zinsser, K.M. (2020). The interplay among early childhood teachers’ social and emotional well-being, mental health consultation, and preschool expulsion. Early Education and Development, 31, 11331150. https://doi.org/10.1080/10409289.2020.1785267.

Khan, A.A.; Shaikh, A.A.; Shaikh, Z.A.; Laghari, A.A.; Karim, S. (2022). IPM-Model: AI and metaheuristic-enabled face recognition using image partial matching for multimedia forensics investigation with genetic algorithm. Multimedia Tools and Applications, 81, 2353323549. http://doi.org/10.1007/s11042-022-12398-x.

Oreški, D.; Andročec, D. (2020). Genetic algorithm and artificial neural network for network forensic analytics. 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), 12001205. https://doi.org/10.23919/MIPRO48935.2020.9245140.

Bonizzoni, P.; Costantini, M.; De Felice, C.; Petescia, A.; Pirola, Y.; Previtali, M.; Zizza, R. (2022). Numeric Lyndon-based feature embedding of sequencing reads for machine learning approaches. Information Sciences, 607, 458476. https://doi.org/10.1016/j.ins.2022.06.005.

Das, S.; Sett, S.; Saha, S.; Saha, S.; Roychoudhury, S.; Pal, K. (2021). A Novel Face Detection Technique Using OpenCV. International Journal of Research in Engineering, Science and Management, 4, 121124.

Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 174. https://doi.org/10.1186%2Fs40537-021-00444-8.

Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 107398. https://doi.org/10.1016/j.ymssp.2020.107398.

Akhand, M.A.H.; Roy, S.; Siddique, N.; Kamal, M.A.S.; Shimamura, T. (2021). Facial emotion recognition using transfer learning in the deep CNN. Electronics, 10, 1036. https://doi.org/10.1109/ICoICT52021.2021.9527512.

Joseph, A.; Geetha, P. (2020). Facial emotion detection using modified eyemap-mouthmap algorithm on an enhanced image and classification with tensorflow. The Visual Computer, 36, 529539. https://doi.org/10.1007/s00371-019-01628-3.

Cengiz, E.; Yilmaz, C.; Kahraman, H. (2021). Classification of human and vehicles with the deep learning based on transfer learning method. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9, 215225. http://doi.org/10.29130/dubited.842394.

Hassouneh, A.; Mutawa, A.M.; Murugappan, M. (2020). Development of a Real-Time emotion recognition system using facial expressions and EEG based on machine learning and deep neural network methods. Informatics in Medicine Unlocked, 20, 100372. https://doi.org/10.1016/j.imu.2020.100372.

Nagpal, S.; Singh, M.; Vatsa, M.; Singh, R.; Noore, A. (2019). Expression classification in children using mean supervised deep Boltzmann machine. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.

Witherow, M.A.; Samad, M.D.; Iftekharuddin, K.M. (2019). Transfer learning approach to multiclass classification of child facial expressions. Applications of Machine Learning, 11139, 275282. http://doi.org/10.1117/12.2530397.

Banerjee, A.; Mutlu, O.C.; Kline, A.; Surabhi, S.; Washington, P.; Wall, D.P. (2022). Training and profiling a pediatric facial expression classifier for children on mobile devices: Machine learning study. Journal of Medical Internet Research Formative Research, 7, e39917. https://doi.org/10.2196/39917.

Washington, P.; Kalantarian, H.; Kent, J.; Husic, A.; Kline, A.; Leblanc, E.; Wall, D.P. (2022). Improved digital therapy for developmental pediatrics using domain-specific artificial intelligence: Machine learning study. Journal of Medical Internet Research Pediatrics and Parenting, 5, e26760. https://doi.org/10.2196/26760.

Guzman, A.L.; Lewis, S.C. (2020). Artificial intelligence and communication: A Human-Machine Communication research agenda. New Media & Society, 22, 7086. http://doi.org/10.1177/1461444819858691.

Holzinger, A.; Müller, H. (2021). Toward human-AI interfaces to support explainability and causability in medical AI. Computer, 54, 7886.

Pan, H.; Xie, L.; Lv, Z.; Li, J.; Wang, Z. (2020). Hierarchical support vector machine for facial micro-expression recognition. Multimedia Tools and Applications, 79, 3145131465. https://doi.org/10.1007/s11042-020-09475-4.

Sharma, S.; Bhatt, M.; Sharma, P. (2020). Face recognition system using machine learning algorithm. 5th International Conference on Communication and Electronics Systems (ICCES), 116.

Mohan, L.; Pant, J.; Suyal, P.; Kumar, A. (2020). Support vector machine accuracy improvement with classification. 12th International Conference on Computational Intelligence and Communication Networks (CICN), 477481.

Sun, Z.; Chiong, R.; Hu, Z.P. (2020). Self-adaptive feature learning based on a priori knowledge for facial expression recognition. Knowledge-Based Systems, 204, 106124. https://doi.org/10.1016/j.knosys.2020.106124.

Wu, J.; Xia, Z.; Feng, X. (2022). Improving Adversarial Robustness of CNNs via Maximum Margin. Applied Sciences, 12, 7927. https://doi.org/10.3390/app12157927.

Chouhayebi, H.; Riffi, J.; Mahraz, M.A.; Yahyaouy, A.; Tairi, H.; Alioua, N. (2020, June). Facial expression recognition based on geometric features. International Conference on Intelligent Systems and Computer Vision (ISCV), 16.

Punuri, S.B.; Kuanar, S.K.; Kolhar, M.; Mishra, T.K.; Alameen, A.; Mohapatra, H.; Mishra, S.R. (2023). Efficient Net-XGBoost: An Implementation for Facial Emotion Recognition Using Transfer Learning. Mathematics, 11, 776. https://doi.org/10.3390/math11030776.

Ma, H.; Celik, T.; Li, H. C. (2021). Lightweight attention convolutional neural network through network slimming for robust facial expression recognition. Signal, Image and Video Processing, 15, 15071515. https://link.springer.com/article/10.1007/s11760-021-01883-9.

Tannugi, D.C.; Britto, A.S.; Koerich, A.L. (2019). Memory integrity of CNNs for cross-dataset facial expression recognition. IEEE International Conference on Systems, Man and Cybernetics (SMC), 38263831.

Pons, G.; Masip, D. (2017). Supervised Committee of Convolutional Neural Networks in Automated Facial Expression Analysis. IEEE Transactions on Affective Computing, 9, 343350. https://doi.org/10.1109/TAFFC.2017.2753235.

Shaees, S.; Naeem, H.; Arslan, M.; Naeem, M. R.; Ali, S. H.; Aldabbas, H. (2020). Facial emotion recognition using transfer learning. International Conference on Computing and Information Technology (ICCIT-1441). https://doi.org/10.1109/iccit-144147971.2020.9213757.

Chronaki, G.; Hadwin, J.A.; Garner, M.; Maurage, P.; Sonuga‐Barke, E.J. (2015). The development of emotion recognition from facial expressions and non‐linguistic vocalizations during childhood. British Journal of Developmental Psychology, 33, 218236. http://doi.org/10.1111/bjdp.12075.

Webb, N.; Ruiz-Garcia, A.; Elshaw, M.; Palade, V. (2020). Emotion recognition from face images in an unconstrained environment for usage on Social robots. International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/ijcnn48605.2020.9207494.

Akamatsu, M.J.S.L.; Kamachi, M.; Gyoba, J.; Budynek, J (1998). The Japanese female facial expression (JAFFE) database. Proceedings of the Third International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 1416.

Lucey, P.; Cohn, J. F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. (2010). The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, 94-101.

LoBue, V.; Thrasher, C. (2015). The Child Affective Facial Expression (CAFE) set: Validity and reliability from untrained adults. Frontiers in Psychology, 5, 1532. https://doi.org/10.3389/fpsyg.2014.01532.

Alshamrani, H. A.; Rashid, M.; Alshamrani, S. S.; Alshehri, A. H. (2023). Osteo-NeT: An Automated System for Predicting Knee Osteoarthritis from X-ray Images Using Transfer-Learning-Based Neural Networks Approach. Healthcare, 11, 1206. http://doi.org/10.3390/healthcare11091206.

Cui, C.; Gao, T.; Wei, S.; Du, Y.; Guo, R.; Dong, S.; Lu, B.; Zhou, Y.; Lv, X.; Liu, Q.; Hu, Z.; Yu, D.; Ma, Y. (2021). PP-LCNet: A lightweight CPU convolutional neural network. https://doi.org/10.48550/arXiv.2109.15099.

About this article

SUBMITTED: 23 March 2023
ACCEPTED: 14 April 2023
PUBLISHED: 9 May 2023
SUBMITTED to ACCEPTED: 23 days
DOI: https://doi.org/10.53623/gisa.v3i1.229

Cite this article
Gau, M.-L., Ting, H.-Y., Toh, T.-H. ., Wong, P.-Y. ., Woo, P.-J. ., Wo, S.-W., & Tan, G.-L. (2023). Effectiveness of Using Artificial Intelligence for Early Child Development Screening. Green Intelligent Systems and Applications, 3(1), 1–13. https://doi.org/10.53623/gisa.v3i1.229
Accessed
931
Citations
0
Share this article