Skip to main content

Performance Evaluation of Low-Density Polyethylene Food Packaging Waste as a Modifier in Performance Grade 70 Porous Asphalt Mixtures

Author(s): Mochamad Indra Ramadhan 1 , Aditya Rizkiardi 1 , Nurani Hartatik 1 , Siti Sekar Gondoarum 2
Author(s) information:
1 Department of Civil Engineering, Faculty of Engineering, Universitas 17 Agustus 1945 Surabaya, Jl. Semolowaru No. 45, Menur Pumpungan, Sukolilo District, Surabaya City, East Java 60118, Indonesia
2 Balai Besar Pelaksanaan Jalan Nasional Jatim – Bali, Indonesia

Corresponding author

Plastic waste, especially Low-Density Polyethylene (LDPE) from food packaging, poses significant environmental challenges due to its non-biodegradable nature and increasing accumulation. In road engineering, porous asphalt is known for its good drainage properties but has lower stability compared to conventional asphalt. This study evaluates the characteristics of porous asphalt mixtures modified with LDPE food packaging waste as a partial substitute for Performance Grade (PG) 70 asphalt. LDPE waste was sourced from the Pasar Pahing Rungkut Temporary Waste Disposal Site in Surabaya, processed, and incorporated into asphalt mixtures at 3%, 4%, and 5% of total weight. The Australian Asphalt Pavement Association was used as a guideline, and the optimum asphalt content (OAC) was determined to be 4.72%. Laboratory tests included Marshall stability, flow, Marshall Quotient (MQ), permeability, and volumetric properties (Voids in Mixture, Voids in Mineral Aggregate, and Voids Filled with Asphalt). The 5% LDPE mixture showed the best performance, with stability reaching 1101.1 kg, MQ of 930.5 kg/mm, and Voids in Mineral Aggregate (VMA) of 54.9%. All mixtures met Australian Asphalt Pavement Association (AAPA) permeability requirements, and the use of LDPE improved mechanical strength without compromising drainage properties. LDPE food packaging waste has potential as an eco-friendly modifier in porous asphalt, enhancing its stability and technical performance while contributing to sustainable waste management.

Xu, F.; Zhao, Y.; Li, K. (2022). Using waste plastics as asphalt modifier: A review. Materials, 15(1), 110. https://doi.org/10.3390/ma15010110.

Shah, S.K.; Gao, Y.; Abdelfatah, A. (2025). Plastic-waste-modified asphalt for sustainable road infrastructure: A comprehensive review. Sustainability, 17(21), 9832. https://doi.org/10.3390/su17219832.

Murana, A.; Akilu, K.; Olowosulu, A. (2021). Use of expanded polystyrene from disposable food pack as a modifier for bitumen in hot mix asphalt. Nigerian Journal of Technology, 39(4), 1021–1028. https://doi.org/10.4314/njt.v39i4.7.

Qabur, A.; Baaj, H.; El-Hakim, M. (2022). Incorporation of multi-layer plastic packaging in asphalt binders: Physical, thermal, rheological, and storage properties evaluation. Polymers, 14(24), 5396. https://doi.org/10.3390/polym14245396.

Roberto, A.; Mesquita, G.; Romeo, E.; Bergamonti, L.; Graiff, C.; Tebaldi, G. (2023). Reusing waste food-packaging plastic as additive modifier in asphalt mixtures. NanoWorld Journal, 9, 023. https://doi.org/10.17756/NWJ.2023-S2-023.

Ghani, U.; Zamin, B.; Bashir, M.T.; Ahmad, M.; Sabri, M.M.S.; Keawsawasvong, S. (2022). Comprehensive study on the performance of waste HDPE and LDPE modified asphalt binders for asphalt pavement application. Polymers, 14(17), 3673. https://doi.org/10.3390/polym14173673.

Rodrigues, C.; Capitão, S.; Picado-Santos, L.; Almeida, A. (2020). Full recycling of asphalt concrete with waste cooking oil as rejuvenator and LDPE from urban waste as binder modifier. Sustainability, 12(19), 8222. https://doi.org/10.3390/su12198222.

Genet, M.B.; Sendekie, Z.B.; Jembere, A.L. (2021). Investigation and optimization of waste LDPE plastic as a modifier of asphalt mix for highway asphalt: Case of Ethiopian roads. Case Studies in Chemical and Environmental Engineering, 4, 100150. https://doi.org/10.1016/j.cscee.2021.100150.

Monticelli, R.; Roberto, A.; Romeo, E.; Tebaldi, G. (2023). Mixed design optimization of polymer-modified asphalt mixtures (PMAs) containing carton plastic packaging wastes. Sustainability, 15(13), 10574. https://doi.org/10.3390/su151310574.

Ma, Y.; Zhou, H.; Jiang, X.; Polaczyk, P.; Xiao, R.; Zhang, M.; Huang, B. (2021). The utilization of waste plastics in asphalt pavements: A review. Cleaner Materials, 2, 100031. https://doi.org/10.1016/j.clema.2021.100031.

Chen, J.S.; Yang, C.H. (2020). Porous asphalt concrete: A review of design, construction, performance and maintenance. International Journal of Pavement Research and Technology, 13(5), 601–612. https://doi.org/10.1007/s42947-020-0039-7.

Wang, J.; Ng, P.-L.; Gong, Y.; Su, H.; Du, J. (2021). Experimental study of low-temperature performance of porous asphalt mixture. Applied Sciences, 11(9), 4029. https://doi.org/10.3390/app11094029.

Xu, G.; Li, K.; Li, C.; Wang, H.; Leng, Z.; Chen, X. (2024). Noise reduction performance and maintenance time of porous asphalt pavement. Construction and Building Materials, 452, 138913. https://doi.org/10.1016/j.conbuildmat.2024.138913.

Oral, G.; Cetin, A. (2023). The performance evaluation of porous asphalt mixtures reinforced by fibers. International Journal of Civil Engineering, 21, 445–459. https://doi.org/10.1007/s40999-022-00782-5.24

Xu, L.; Zhang, Y.; Zhang, Z.; Ni, H.; Hu, M.; Sun, D. (2023). Optimization design of rubberized porous asphalt mixture based on noise reduction and pavement performance. Construction and fBuilding Materials, 389, 131551. https://doi.org/10.1016/j.conbuildmat.2023.131551.

Akhtar, M.N.; Al-Shamrani, A.M.; Jameel, M.; Khan, N.A.; Ibrahim, Z.; Akhtar, J.N. (2021). Stability and permeability characteristics of porous asphalt pavement: An experimental case study. Case Studies in Construction Materials, 15, e00591. https://doi.org/10.1016/j.cscm.2021.e00591.

Gusty, S.; Tumpu, M.; Parung, H.; Marzuki, I. (2021). Marshall characteristics of porous asphalt containing low density polyethylene (LDPE) plastic waste. IOP Conference Series: Earth and Environmental Science, 921, 012025. https://doi.org/10.1088/1755-1315/921/1/012025.

Candra, A I.; Mudjanarko, S.W.; Poernomo, Y.C.S.; Vitasmoro, P. (2020). Analysis of the ratio of coarse aggregate in porous asphalt mixture. Journal of Physics: Conference Series, 1569(4), 042029. https://doi.org/10.1088/1742-6596/1569/4/042029.

Li, Q.; Wang, N.; Wu, J.; Zheng, J.; Ma, T.; Zhang, C. (2025). Performance evaluation of reclaimed porous asphalt mixtures based on different mixture design methods: Meso-structural characteristics and macro-pavement properties. Construction and Building Materials, 501, 144320. https://doi.org/10.1016/j.conbuildmat.2025.144320.

J-Sil Editorial Team. (2025). Porous asphalt innovation: Evaluation of Marshall characteristics of porous asphalt with marble waste as an additive. J-Sil, 10(1), 193–202. https://journal.ipb.ac.id/jsil/article/view/62006.

Ling, S.; Sun, Y.; Sun, D.; Jelagin, D. (2022). Pore characteristics and permeability simulation of porous asphalt mixture in pouring semi-flexible pavement. Construction and Building Materials, 330, 127253. https://doi.org/10.1016/j.conbuildmat.2022.127253.

Jalee, M.M.; Albdairi, M.; Almusawi, A. (2025). Marshall-based thermal performance analysis of conventional and polymer-modified asphalt binders. Construction Materials, 5(2), 19. https://doi.org/10.3390/constrmater5020040.

Abualia, A.; Akentuna, M.; Mohammad, L.N.; Cooper, S.B.; Cooper, S.B. Jr. (2024). Improving asphalt binder durability using sustainable materials: Rheological and chemical analysis of polymer-, rubber-, and epoxy-modified asphalt binders. Sustainability, 16(13), 5379. https://doi.org/10.3390/su16135379.

Khan, A.; Ahmed, S.; Khattak, N.U.; Hoy, M.; Se, C. (2025). Effect of nanoclay on the performance characteristics of SBS-modified asphalt concrete mixtures. Coatings, 15(9), 984. https://doi.org/10.3390/coatings15090984.

Almutairi, H.; Baaj, H. (2023). Evaluating self-healing behaviour of asphalt binders modified with phase-change materials, polymers and recycled glass powder. Polymers, 15(8), 1934. https://doi.org/10.3390/polym15081934.

About this article

SUBMITTED: 17 November 2025
ACCEPTED: 01 February 2026
PUBLISHED: 2 February 2026
SUBMITTED to ACCEPTED: 76 days
DOI: https://doi.org/10.53623/csue.v6i1.901

Cite this article
Ramadhan, M. I. ., Rizkiardi, A. ., Hartatik, N. ., & Gondoarum, S. S. . (2026). Performance Evaluation of Low-Density Polyethylene Food Packaging Waste as a Modifier in Performance Grade 70 Porous Asphalt Mixtures. Civil and Sustainable Urban Engineering, 6(1), 16–25. https://doi.org/10.53623/csue.v6i1.901
Keywords
Citations
0
Share this article