Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. (2020). Carbon Dioxide Uptake by Cement-Based Materials: A Spanish Case Study. Applied Science, 10, 339. https://doi.org/10.3390/app10010339.
Udara Willhelm Abeydeera, L.H.; Wadu Mesthrige, J.; Samarasinghalage, T.I. (2019). Global Research on Carbon Emissions: A Scientometric Review. Sustainability, 11, 3972. https://doi.org/10.3390/su11143972.
Abiodun, Y.O.; Olanrewaju, O.A.; Gbenebor, O.P.; Ochulor, E.F.; Obasa, D.V.; Adeosun, S.O. (2022). Cutting Cement Industry CO2 Emissions through Metakaolin Use in Construction. Atmosphere, 13, 1494. https://doi.org/10.3390/atmos13091494.
Voldsund, M.; Gardarsdottir, S.O.; De Lena, E.; Pérez-Calvo, J.-F.; Jamali, A.; Berstad, D.; Fu, C.; Romano, M.; Roussanaly, S.; Anantharaman, R.; Hoppe, H.; Sutter, D.; Mazzotti, M.; Gazzani, M.; Cinti, G.; Jordal, K. (2019). Comparison of Technologies for CO2 Capture from Cement Production—Part 1: Technical Evaluation. Energies, 12, 559. https://doi.org/10.3390/en12030559.
Latawiec, R.; Woyciechowski, P.; Kowalski, K.J. (2018). Sustainable Concrete Performance—CO2-Emission. Environments, 5, 27. https://doi.org/10.3390/environments5020027.
Zailani, W.W.A.; Abdullah, M.M.A.B.; Arshad, M.F.; Razak, R.A.; Tahir, M.F.M.; Zainol, R.R.M.A.; Nabialek, M.; Sandu, A.V.; Wysłocki, J.J.; Błoch, K. (2021). Characterisation at the Bonding Zone between Fly Ash Based Geopolymer Repair Materials (GRM) and Ordinary Portland Cement Concrete (OPCC). Materials, 14, 56. https://doi.org/10.3390/ma14010056.
Bocullo, V.; Vaičiukynienė, D.; Gečys, R.; Daukšys, M. (2020). Effect of Ordinary Portland Cement and Water Glass on the Properties of Alkali Activated Fly Ash Concrete. Minerals, 10, 40. https://doi.org/10.3390/min10010040.
Maglad, A.M.; Zaid, O.; Arbili, M.M.; Ascensão, G.; Șerbănoiu, A.A.; Grădinaru, C.M.; García, R.M.; Qaidi, S.M.A.; Althoey, F.; de Prado-Gil, J. (2022). A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings, 12, 1066. https://doi.org/10.3390/buildings12081066.
Verma, M.; Dev, N.; Rahman, I.; Nigam, M.; Ahmed, M.; Mallick, J. (2022). Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. Crystals, 12, 514. https://doi.org/10.3390/cryst12040514.
Wong, L.S. (2022). Durability Performance of Geopolymer Concrete: A Review. Polymers, 14, 868. https://doi.org/10.3390/polym14050868.
Ahmed, H.U.; Mohammed, A.A.; Rafiq, S.; Mohammed, A.S.; Mosavi, A.; Sor, N.H.; Qaidi, S.M.A. (2021). Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review. Sustainability, 13, 13502. https://doi.org/10.3390/su132413502.
Nikoloutsopoulos, N.; Sotiropoulou, A.; Kakali, G.; Tsivilis, S. (2021). Physical and Mechanical Properties of Fly Ash Based Geopolymer Concrete Compared to Conventional Concrete. Buildings, 11, 178. https://doi.org/10.3390/buildings11050178.
Dao, D.V.; Trinh, S.H.; Ly, H.-B.; Pham, B.T. (2019). Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches. Applied Science, 9, 1113. https://doi.org/10.3390/app9061113.
Luhar, S.; Luhar, I.; Nicolaides, D.; Gupta, R. (2021). Durability Performance Evaluation of Rubberized Geopolymer Concrete. Sustainability, 13, 5969. https://doi.org/10.3390/su13115969.
Sherwani, A.F.H.; Younis, K.H.; Arndt, R.W. Fresh, (2022). Mechanical, and Durability Behavior of Fly Ash-Based Self Compacted Geopolymer Concrete: Effect of Slag Content and Various Curing Conditions. Polymers, 14, 3209. https://doi.org/10.3390/polym14153209.
Haufe, J.; Vollpracht, A.; Matschei, T. (2021). Development of a Sulfate Resistance Performance Test for Concrete by Tensile Strength Measurements: Determination of Test Conditions. Crystals, 11, 1001. https://doi.org/10.3390/cryst11081001.
Haufe, J.; Vollpracht, A.; Matschei, T. (2021). Performance Test for Sulfate Resistance of Concrete by Tensile Strength Measurements: Determination of Test Criteria. Crystals, 11, 1018. https://doi.org/10.3390/cryst11091018.
Kewalramani, M.; Khartabil, A. (2021). Porosity Evaluation of Concrete Containing Supplementary Cementitious Materials for Durability Assessment through Volume of Permeable Voids and Water Immersion Conditions. Buildings, 11, 378. https://doi.org/10.3390/buildings11090378.
Ibrahim, W.M.W.; Abdullah, M.M.A.B.; Ahmad, R.; Sandu, A.V.; Vizureanu, P.; Benjeddou, O.; Rahim, A.; Ibrahim, M.; Sauffi, A.S. (2022). Chemical Distributions of Different Sodium Hydroxide Molarities on Fly Ash/Dolomite-Based Geopolymer. Materials, 15, 6163. https://doi.org/10.3390/ma15176163.
Abdullah, A.; Hussin, K.; Abdullah, M.M.A.B.; Yahya, Z.; Sochacki, W.; Razak, R.A.; Błoch, K.; Fansuri, H. (2021). The Effects of Various Concentrations of NaOH on the Inter-Particle Gelation of a Fly Ash Geopolymer Aggregate. Materials, 14, 1111. https://doi.org/10.3390/ma14051111.
Dong, P.S.; Tuan, N.V.; Thanh, L.T.; Thang, N.C.; Cu, V.H.; Mun, J.-H. Compressive Strength (2020). Development of High-Volume Fly Ash Ultra-High-Performance Concrete under Heat Curing Condition with Time. Applied Science, 10, 7107. https://doi.org/10.3390/app10207107.
Choi, H.; Koh, T.; Choi, H.; Hama, Y. (2019). Performance Evaluation of Precast Concrete Using Microwave Heating Form. Materials, 12, 1113. https://doi.org/10.3390/ma12071113.
Mohamed, O. (2018). Durability and Compressive Strength of High Cement Replacement Ratio Self-Consolidating Concrete. Buildings, 8, 153. https://doi.org/10.3390/buildings8110153.
Horňáková, M.; Lehner, P.; Le, T.D.; Konečný, P.; Katzer, J. (2020). Durability Characteristics of Concrete Mixture Based on Red Ceramic Waste Aggregate. Sustainability, 12, 8890. https://doi.org/10.3390/su12218890.
Salih, M.A.; Ahmed, S.K.; Alsafi, S.; Abullah, M.M.A.B.; Jaya, R.P.; Abd Rahim, S.Z.; Aziz, I.H.; Thanaya, I.N.A. (2022). Strength and Durability of Sustainable Self-Consolidating Concrete with High Levels of Supplementary Cementitious Materials. Materials, 15, 7991. https://doi.org/10.3390/ma15227991.
Falaciński, P.; Machowska, A.; Szarek, Ł. (2021). The Impact of Chloride and Sulphate Aggressiveness on the Microstructure and Phase Composition of Fly Ash-Slag Mortar. Materials, 14, 4430. https://doi.org/10.3390/ma14164430.
SUBMITTED: 02 December 2022
ACCEPTED: 03 February 2023
PUBLISHED:
7 February 2023
SUBMITTED to ACCEPTED: 63 days
DOI:
https://doi.org/10.53623/csue.v3i1.171