Wei, H.; Wang, H.; Li, A.; Cui, D.; Zhao, Z.; Chu, L.; Wei, X. et al. (2020). Multifunctions of Polymer Nanocomposites: Environmental Remediation, Electromagnetic Interference Shielding, And Sensing Applications. Chemistry of Nanomaterials for Engergy, Biology and More, 6, 174–184. , https://doi.org/10.1002/cnma.201900588.
Nayebi, P.; Babamoradi, M. (2021). Synthesis of ZnO Nanorods/Fe3O4/Polypyrrole Nanocomposites for Photocatalytic Activity under the Visible Light Irradiation. International Journal for Light and Electron Optics, 244, 167497. http://doi.org/10.1016/j.ijleo.2021.167497.
Guerra, F.D.; Smith, G.D.; Alexis, F.; Whitehead, D.C. (2017). A Survey of VOC Emissions from Rendering Plants. Aerosol and Air Quality Research, 17, 209–217. http://doi.org/10.4209/aaqr.2016.09.0391.
Guerra, F.D.; Campbell, M.L.; Whitehead, D.C.; Alexis, F. (2017). Tunable Properties of Functional Nanoparticles for Efficient capture of VOCs. Chemistry Select 2, 9889–9894. http://doi.org/10.1002/slct.201701736.
Campbell, M.L.; Guerra, F.D.; Dhulekar, J.; Alexis, F.; Whitehead, D.C. (2015). Target-Specific Capture of Environmentally Relevant Gaseous Aldehydes and Carboxylic Acids with Functional Nanoparticles. Chemistry - A European Journal, 21, 14834–14842. http://doi.org/10.1002/chem.201502021.
Shah, K.J.; Imae, T. (2016). Selective gas capture ability of gas-adsorbent-incorporated cellulose nanofiber films. Biomacromolecules, 17, 1653–1661. https://doi.org/10.1021/acs.biomac.6b00065.
Ojea-Jiménez, I.; López, X.; Arbiol, J.; Puntes, V. (2012). Citrate-coated gold nanoparticles as smart scavengers for mercury (II) removal from polluted waters. ACS Nano, 6, 2253–2260. https://doi.org/10.1021/nn204313a.
Sule, R.; Mishra, A.K. (2020). MOFs-Carbon Hybrid Nanocomposites in Environmental Protection Applications. Environmental Science and Pollution Research, 27, 16004–16018. https://doi.org/10.1007/s11356-020-08299-x.
Veličković, Sandra, et al. (2019). Application of Nanocomposites in the Automotive Industry. Mobility and Vehicle Mechanics, 45, 51–64. https://doi.org/10.24874/mvm.2019.45.03.05.
Fu, F.L.; Wang, Q. (2011) Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
WHO (2011). Guidelines for drinking-water quality. 4th ed. Geneva: World Health Organization; pp 1–541.
Wu, S.; Wu, H.; Button, M.; Konnerup, D.; Brix, H. (2019). Impact of engineered nanoparticles on microbial transformations of carbon, nitrogen, and phosphorus in wastewater treatment processes – A review. Science of the Total Environment, 660, 1144-1154. https://doi.org/10.1016/j.scitotenv.2019.01.106.
Hu, C.; Lin, Y.; Connell, J.W.; Cheng, H.M.; Gogotsi, Y.; Titirici, M.M.; Dai, L. (2019). Carbon‐Based Metal‐Free Catalysts for Energy Storage and Environmental Remediation. Advanced Materials, 13, 1806128. https://doi.org/10.1002/adma.201806128.
Crane, M.; Handy, R.; Garrod, J.; Owen, R. (2008). Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology, 17, 421-437. https://doi.org/10.1007/s10646-008-0215-z.
Choi, O.; Clevenger, T.; Deng, B.; Surampalli, R.; Ross Jr., L.; Hu, Z. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research, 43, 1879-1886. https://doi.org/10.1016/j.watres.2009.01.029.
Shahedi, A.; Darban, A.K.; Taghipour, F.; Jamshidi-Zanjani, A. (2020). A Review on Industrial Wastewater Treatment via Electrocoagulation Processes. Current Opinion in Electrochemistry, 22, 154–69. https://doi.org/10.1016/j.coelec.2020.05.009.
Han, C.; Choi, H.; Dionysiou, D.D. (2013). Green chemistry for environmental remediation. In An Introduction to Green Chemistry Methods, 1st Ed.; Sanghi, R., Singh, V. Eds.; Wiley-Scrivener: Beverly, USA, pp. 148–166. https://doi.org/10.4155/ebo.13.301.
Díaz-Vargas, C.A.; Solarte-Toro, J.C.; Veloza, L.W.C.; Alzate, C.A.C.; Restrepo-Parra, E.; Higuita, J.C.. (2021). Alternatives for Cocaine Disposal: An Experimental, Techno-Economic, and Environmental Comparison between Incineration and Biological Degradation. Journal of Cleaner Production, 296, 126462. https://doi.org/10.1016/j.jclepro.2021.126462.
Goyal, P.; Chakraborty, S.; Misra S.K. (2018). Multifunctional Fe3O4-ZnO Nanocomposites for Environmental Remediation Applications. Environmental Nanotechnology, Monitoring & Management, 10, 28–35. https://doi.org/10.1016/j.enmm.2018.03.003.
Zhang, C.; Hu, Z.; Li, P.; Gajaraj, S. (2016). Governing factors affecting the impacts of silver nanoparticles on wastewater treatment. Science of the Total Environment, 572, 852-873. https://doi.org/10.1016/j.scitotenv.2016.07.145.
Choi, O.; Hu, Z. (2008). Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environmental Science & Technology, 42, 4583-4588. https://doi.org/10.1021/es703238h.
Nel, A. (2006). Toxic Potential of Materials at the Nanolevel. Science, 311, 622-627 https://doi.org/10.1126/science.1114397.
Gao, F. (2012). Advances in Polymer Nanocomposites, 1st ed.; Elsevier: Amsteerdam, Netherland.
Kadu, B.S.; Limaye, R.A.; Natu, A.D.; Chikate, R. (2012). Potentiality of Fe-Ni Nanocomposites towards Environmental Abetment of Magenta Dye. Environmental Progress & Sustainable Energy, 32, 615–23, https://doi.org/10.1002/ep.11672.
Tang, J.; Chen, D.; Yao, Q.; Xie, J.; Yang, J. (2017). Recent advances in noble metal-based nanocomposites for electrochemical reactions. Materials Today Energy, 6, 115–127. https://doi.org/10.1016/j.mtener.2017.09.005.
Wayland, H.A. (2018). Synthesis and Characterization of Transition Metal Based Nanocomposites for Orr in Fuel Cell Applications. Master Thesis, University of Arkansas at Little Rock, Ann Arbor, USA.
Nguyen, T.P. (2011). Polymer-Based Nanocomposites for Organic Optoelectronic Devices. A Review. Surface and Coatings Technology, 206, 742–52. https://doi.org/10.1016/j.surfcoat.2011.07.010.
Zhao, X.; Lv, L.; Pan, B.; Zhang. W.; Zhang, S.; Zhang, Q. (2011). Polymer-Supported Nanocomposites for Environmental Application: A Review. Chemical Engineering Journal, 170, 381–94. https://doi.org/10.1016/j.cej.2011.02.071.
Noamani, S.; Niroomand, S.; Rastgar, M.; Sadrzadeh, M. (2019). Carbon-Based Polymer Nanocomposite Membranes for Oily Wastewater Treatment. Npj Clean Water, 2, 20. https://doi.org/10.1038/s41545-019-0044-z.
Dutheil de la Rochère, A.; Evstratov, A.; Bayle, S.; Sabourin, L.; Frering, A.; Lopez-Cuesta, J.M. (2019). Exploring the Antimicrobial Properties of Dark-Operating Ceramic-Based Nanocomposite Materials for the Disinfection of Indoor Air. PLoS ONE, 14, e0224114. https://doi.org/10.1371/journal.pone.0224114.
Kamalan Kirubaharan, A.M.; Kuppusami, P. (2020). Corrosion Behavior of Ceramic Nanocomposite Coatings at Nanoscale. Corrosion Protection at the Nanoscale, 2020, 295–314. http://doi.org/10.1016/b978-0-12-819359-4.00016-7.
Omanović-Mikličanin, E.; Badnjevic, A.; Kazlagic, A.; Hazlovac, M. (2019). Nanocomposites: A Brief Review. Health and Technology, 10, 51–59. https://doi.org/10.1007/s12553-019-00380-x.
Sharma, R.; Sapna; Kumar, D. (2020). Environmental Monitoring by Removing Air Pollutants Using Nanocomposites Materials. In Environmental Remediation Through Carbon Based Nano Composites; Jawaid, M., Ahmad, A., Ismail, N., Rafatullah, M., Eds.; Springer: Singapore, pp. 43–59. http://doi.org/10.1007/978-981-15-6699-8_3.
Turagam, N.; Mudrakola, D.P. (2019). Advantages and Limitations of CNT-Polymer Composites in Medicine and Dentistry. In Perspective of Carbon Nanotubes; Saleh, H.E., El-Sheikh, S.M.M., Eds.; IntechOpen: Vienna, Austria. http://doi.org/10.5772/intechopen.86183.
Mondal, P.; Anweshan, A.; Purkait, M.K. (2020). Green Synthesis and Environmental Application of Iron-Based Nanomaterials and Nanocomposite: A Review. Chemosphere, 259, 127509. https://doi.org/10.1016/j.chemosphere.2020.127509.
Wang, H.; Yuan, X.; Zeng, G.; Wu, Y.; Liu, Y.; Jiang, Q.; Gu, S. (2016). ChemInform Abstract: Three-Dimensional Graphene Based Materials: Synthesis and Applications from Energy Storage and Conversion to Electrochemical Sensor and Environmental Remediation. ChemInform, 47. https://doi.org/10.1002/chin.201604219.
Wang, C.; Wang, Y.; Yang, Z.; Hu, N. (2018). Review of Recent Progress on Graphene-Based Composite Gas Sensors. Ceramics International, 47, 16367–16384. https://doi.org/10.1016/j.ceramint.2021.02.144.
Ravichandran, K.; Praseetha, P.K.; Arun, T.; Gobalakrishnan, S. (2018). Synthesis of Nanocomposites. Synthesis of Inorganic Nanomaterials, 2018, 141–168. https://doi.org/10.1016/b978-0-08-101975-7.00006-3.
Wang, Z.; He, W.; Zhang, X.; Yi, X.; Wng, J.; Yang, G.; Yue, Y. (2017). 3D Porous Li3V2(PO4)3/Hard Carbon Composites for Improving the Rate Performance of Lithium Ion Batteries. RSC Advances, 7, 21848–55. https://doi.org/10.1039/c6ra28014e.
Zhao, G. Huang, X.; Tang, Z.; Huang, Q.; Niu, F.; Wang, X. (2018). Polymer-Based Nanocomposites for Heavy Metal Ions Removal from Aqueous Solution: A Review. Polymer Chemistry, 9, 3562–82. https://doi.org/10.1039/c8py00484f.
Youssef, A.M.; El-Naggar, M.E.; Malhat, F.M.; El Sharkawi, H.M. (2019). Efficient Removal of Pesticides and Heavy Metals from Wastewater and the Antimicrobial Activity of F-MWCNTs/PVA Nanocomposite Film. Journal of Cleaner Production, 206, 315–25. https://doi.org/10.1016/j.jclepro.2018.09.163.
Koushik, D.; Gupta, S.S.; Maliyekkal, S.M., pradeep, T. (2016). Rapid Dehalogenation of Pesticides and Organics at the Interface of Reduced Graphene Oxide–Silver Nanocomposite. Journal of Hazardous Materials, 308, 192–98., https://doi.org/10.1016/j.jhazmat.2016.01.004.
Miao, J.; liu, A.; Wu, L.; Yu, M.; Wei, W.; Liu, S. (2020). Magnetic Ferroferric Oxide and Polydopamine Molecularly Imprinted Polymer Nanocomposites Based Electrochemical Impedance Sensor for the Selective Separation and Sensitive Determination of Dichlorodiphenyltrichloroethane (DDT). Analytica Chimica Acta, 1095, 82–92. https://doi.org/10.1016/j.aca.2019.10.027.
Youssef, A.M.; Malhat, F.M.; Abd El-Hakim, A.F.A. (2013). Preparation and Utilization of Polystyrene Nanocomposites Based on TiO2Nanowires. Polymer-Plastics Technology and Engineering, 52, 228–235. https://doi.org/10.1080/03602559.2012.735311.
Baker, F.J.; Silverton, R.E. (1976). Biological Staining. Introduction to Medical Laboratory Technology, 1976, 384–92, http://doi.org/10.1016/B978-0-407-00154-1.50021-X.
Lučić, M.; Milosavljevic, N.; radetic, M.; Saponjic, Z.; Radoicic, M.; Krusic, M.K. (2013). The Potential Application of TiO2/Hydrogel Nanocomposite for Removal of Various Textile Azo Dyes. Separation and Purification Technology, 122, 206–216. https://doi.org/10.1016/j.seppur.2013.11.002.
Enfrin, M.; Dumée, L.; Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions. Water Research, 161, 621-638. https://doi.org/10.1016/j.watres.2019.06.049.
Chaturvedi, V.; Kushwaha, A.; Maurya, S.; Tabassum, N.; Chaurasia, H.; Singh, M. (2019). Wastewater Treatment Through Nanotechnology: Role and Prospects. In Restoration Of Wetland Ecosystem: A Trajectory Towards A Sustainable Environment; Upadhyay, A., Singh, R., Singh, D., Eds.; Springer: Singapore, pp. 227-247. https://doi.org/10.1007/978-981-13-7665-8_14.
SUBMITTED: 25 August 2022
ACCEPTED: 06 October 2022
PUBLISHED:
10 October 2022
SUBMITTED to ACCEPTED: 43 days
DOI:
https://doi.org/10.53623/csue.v2i2.113