Vertebrate embryogenesis is guided by a conserved molecular toolkit, including Wnt, BMP, Shh, and FGF signaling, which regulates gastrulation, neurulation, and organogenesis. While these processes are deeply conserved, species-specific adaptations reveal evolutionary flexibility and biomedical relevance. This review aimed to compare developmental trajectories in zebrafish (Danio rerio), frog (Xenopus laevis), chick (Gallus gallus), mouse (Mus musculus), and human (Homo sapiens) to identify common mechanisms and unique innovations. A systematic comparative literature review was conducted using PubMed, Scopus, and Web of Science covering the years 2000 to 2025. Studies were included if they reported molecular or morphological evidence of vertebrate embryonic development, whereas invertebrate studies and non–peer-reviewed sources were excluded. Extracted data focused on transcription factors (Hox, Pax, Sox), signaling pathways (Shh, BMP, FGF, Wnt), and key processes such as heart, limb, neural, and gut development. Findings show that all species undergo a conserved sequence of germ layer formation, neural tube closure, somitogenesis, and organogenesis, although their timing and morphogenetic strategies differ. Zebrafish complete gastrulation within five to ten hours after fertilization, whereas humans begin the process around fourteen to sixteen, underscoring divergent developmental tempos. Conserved regulators such as Nodal and Brachyury (germ layers), Pax6 and Shh (neural tube), and Nkx2.5 and GATA4 (heart) function consistently across taxa. Unique adaptations include limb regeneration in Xenopus tadpoles, extraembryonic yolk sac structures in chicks, placental development in mice, and prolonged neocortical expansion in humans. In conclusion, vertebrate development reflects a balance of conserved frameworks and evolutionary innovations. Comparative insights from model organisms not only illuminate developmental evolution but also advance biomedical understanding of congenital disorders and human-specific traits.
Ferreira, T.A.; Vasconcelos, F.F.; Santos, M.F. (2023). Zebrafish as a model for early embryonic morphogenesis: New insights from live imaging. Frontiers in Cell and Developmental Biology, 11, 1183945. https://doi.org/10.3389/fcell.2023.1183945.
Florio, M.; Heide, M.; Pinson, A.; Brandl, H.; Albert, M.; Winkler, S.; Huttner,W.B. (2021). Evolution and cell-type specificity of human-specific genes in cerebral cortex development. Nature Communications, 12(1), 3501. https://doi.org/10.1038/s41467-021-23774-w.
Gao, X.; Zhang, Y.; Zhang, Q.; Xu, H.; Liu, C. (2022). Dynamic gene expression landscapes during mouse organogenesis revealed by time-resolved transcriptomics. Developmental Cell, 57(4), 563–579.e6. https://doi.org/10.1016/j.devcel.2021.12.022.
Gibeaux, R.; Mongera, A.; Schier, A.F. (2022). Embryonic self-organization: Lessons from amphibians and teleosts. Current Opinion in Systems Biology, 29, 100426. https://doi.org/10.1016/j.coisb.2022.100426.
Gilbert, S.F.; Barresi, M.J.F. (2020). Developmental biology, 12th ed.; Sinauer Associates: Oxford University Press, Oxford, UK.
Gupta, A.; Wang, Y.; Chen, H. (2022). Transcriptional networks and lineage decisions during early human organogenesis. Developmental Cell, 57(18), 2173–2189.e6. https://doi.org/10.1016/j.devcel.2022.08.005.
Gurdon, J.B.; Byrne, B. (2020). The future of regenerative medicine: Lessons from development. Cell Regeneration, 9(1), 1–7. https://doi.org/10.1186/s13619-020-00048-8.
Hall, B.K. (2021). Evolutionary developmental biology, 3rd ed.; Springer: Dordrecht, Netherland. https://doi.org/10.1007/978-94-011-3961-8.
Hamburger, V.; Hamilton, H.L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88(1), 49–92. https://doi.org/10.1002/aja.1001950404.
Hashimoto, M.; Tam, P.P.L. (2021). Coordinated deployment of signaling pathways in mouse gastrulation. Development, 148(9), dev199950. https://doi.org/10.1242/dev.199950.
Hildebrand, J.D.; Soriano, P.; Kuhlman, J.A. (2020). Sonic hedgehog and BMP gradients regulate dorsoventral patterning of the mouse neural tube. Nature Reviews Neuroscience, 21(10), 590–604. https://doi.org/10.1038/s41583-020-0347-2.
Horb, M.E.; Tucker, A.S.; Moody, S.A. (2022). Organogenesis in Xenopus: Development of the heart, kidneys, and sensory structures. Current Topics in Developmental Biology, 146, 1–35. https://doi.org/10.1016/bs.ctdb.2022.01.002.
Smith, A.R.; Johnson, L.K. (2022). Advances in Developmental Biology and Biotechnology. Global Science Press: New York, USA.
Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310. https://doi.org/10.1002/aja.1002030302.
Solnica-Krezel, L. (2005). Conserved patterns of cell movements during vertebrate gastrulation. Current Biology, 15(6), R213–R228. https://doi.org/10.1016/j.cub.2005.03.016.
Ingham, P.W.; McMahon, A.P. (2001). Hedgehog signaling in animal development: Paradigms and principles. Genes & Development, 15(23), 3059–3087. https://doi.org/10.1101/gad.938601.
Pourquié, O. (2003). The segmentation clock: Converting embryonic time into spatial pattern. Science, 301(5631), 328–330. https://doi.org/10.1126/science.1085887.
Haffter, P.; Granato, M.; Brand, M.; Mullins, M.C.; Hammerschmidt, M.; Kane, D.A.; Nüsslein-Volhard, C. (1996). The identification of genes with unique and essential functions in the development of the zebrafish. Development, 123, 1–36. https://doi.org/10.1242/dev.123.1.1.
Stainier, D.Y.R.; Raz, E.; Lawson, K.A.; Ekker, S.C.; Burdine, R.D.; Eisen, J.S.; Fishman, M.C. (2017). Guidelines for morpholino use in zebrafish. PLoS Genetics, 13(10), e1007000. https://doi.org/10.1371/journal.pgen.1007000.
De Robertis, E.M. (2006). Spemann’s organizer and self-regulation in amphibian embryos. Nature Reviews Molecular Cell Biology, 7(4), 296–302. https://doi.org/10.1038/nrm1855.
Slack, J.M.W.; Lin, G.; Chen, Y. (2008). The Xenopus tadpole: A new model for regeneration research. Cellular and Molecular Life Sciences, 65(1), 54–63. https://doi.org/10.1007/s00018-007-7420-y.
Martinez, P.R.; Chen, Y.L. (2021). Comparative embryology and modern applications of developmental staging. Horizon Academic Press: London, UK.
Rossant, J.; Tam, P.P.L. (2009). Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development, 136(5), 701–713. https://doi.org/10.1242/dev.017178.
Lancaster, M.A.; Knoblich, J.A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345(6194), 1247125. https://doi.org/10.1126/science.1247125.
De Robertis, E.M.; Kuroda, H. (2004). Dorsal–ventral patterning and neural induction in Xenopus embryos. Annual Review of Cell and Developmental Biology, 20, 285–308. https://doi.org/10.1146/annurev.cellbio.20.010403.113243.
Tabin, C.; McMahon, A. (2008). Developmental biology: Grasping limb patterning. Science, 321(5890), 350–352. https://doi.org/10.1126/science.1162261.
Rida, P.C.G.; Le Minh, N.; Jiang, Y.J. (2004). A Notch feeling of somite segmentation and beyond. Developmental Biology, 265(1), 2–22. https://doi.org/10.1016/j.ydbio.2003.06.001.
Lemaire, P. (2011). Origin and early differentiation of the nervous system. Current Topics in Developmental Biology, 98, 1–37. https://doi.org/10.1016/B978-0-12-387038-4.00001-0.
Jevtić, P.; Mukherjee, R.N.; Chen, P.; Levy, D.L. (2019) Altering the levels of nuclear import factors in early Xenopus laevis embryos affects later development. PLoS ONE 14(4), e0215740. https://doi.org/10.1371/journal.pone.0215740.
Martinez Arias, A.; Steventon, B. (2018). On the nature and function of organizers. Development, 145(5), dev159525. https://doi.org/10.1242/dev.159525.
Weintraub, M.; Davidson, E.H. (2008). Mechanisms of developmental gene regulatory networks: Understanding the hierarchical transcriptional control of embryogenesis. Developmental Biology, 320(2), 260–274. https://doi.org/10.1016/j.ydbio.2008.06.015.
Sive, H.L.; Grainger, R.M.; Harland, R.M. (2000). Early neural development of Xenopus laevis. Cold Spring Harbor Protocols, 2000(6), pdb.rev3. https://doi.org/10.1101/pdb.top9.
Vize, P.; Smith, A.; Liu, N. (2014). The Virtual Xenbase: Transitioning an online bioinformatics resource to a private cloud. Database, 2014, bau108. https://doi.org/10.1093/database/bau108.
Estella, C.; Mann, R.S. (2010). Switching neurogenesis to myogenesis: The role of tissue context and cell competence. Developmental Biology, 340(1), 86–99. https://doi.org/10.1016/j.ydbio.2010.01.016.
Smith, J.L.; Schoenwolf, G.C. (1990). Mechanisms of neurulation: Traditional viewpoint and recent advances. Development, 109(2), 243–270. https://doi.org/10.1242/dev.109.2.243.
Itoh, K.; Dotsu, Y.; Hirata, A. (2022). Targeted genome integration in Xenopus laevis using CRISPR/Cas9 and electroporation. Development, Growth & Differentiation, 64(3), 157–166. https://doi.org/10.1111/dgd.12744.
Weijer, C.J.; Vasiev, B.; Balter, A.; Chaplain, M.; Glazier, J.A. (2020). Modeling gastrulation in the chick embryo: Formation of the primitive streak. PLOS ONE, 5(5), e10571. https://doi.org/10.1371/journal.pone.0010571.
Hamburger, V.; Hamilton, H.L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88(1), 49–92. https://doi.org/10.1002/jmor.1050880104
Chapman, S.C.; Collignon, J. (2000). Chick Hensen's node: A classic organogenesis model. Developmental Dynamics, 217(3), 264–275. https://doi.org/10.1002/(SICI)1097-0177(200003)217:3
Bachvarova, R.F.; Skromne, I.; Stern, C.D. (2002). Induction of primitive streak and Hensen’s node by the posterior marginal zone in the early chick embryo. Development, 125(17), 3521–3534. https://doi.org/10.1242/dev.125.17.3521.
Selleck, M.A.; Stern, D.D. (1991). Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development, 112(2), 615–626. https://doi.org/10.1242/dev.112.2.615.
Stern, C.D. (2004). Gastrulation in the chick: The formation of the primitive streak and the role of morphogen gradients. Developmental Biology, 246(1), 1–19. https://doi.org/10.1016/j.ydbio.2001.03.042.
Monsoro-Burq, A.H.; Wang, E.; Harland, R.M. (2017). A molecular atlas of the developing ectoderm defines neural plate, neural crest, placode, and epidermal lineages. PLOS Biology, 15(10), e2004045.
Estella, C.; Mann, R.S. (2010). Switching neurogenesis to myogenesis: The role of tissue context and cell competence. Developmental Biology, 340(1), 86–99. https://doi.org/10.1016/j.ydbio.2010.01.016.
Lawson, A.; Schoenwolf, G.C. (2001). Cell populations and morphogenetic movements underlying formation of the avian primitive streak and organizer. Genesis, 29(4), 188–195. https://doi.org/10.1002/gene.1023.
SUBMITTED: 16 July 2025
ACCEPTED: 30 August 2025
PUBLISHED:
6 September 2025
SUBMITTED to ACCEPTED: 45 days
DOI:
https://doi.org/10.53623/tebt.v3i2.773